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Abstract

Multirate methods are designed to efficiently

solve systems of ordinary differential equa-

tions that have fast and slow dynamics. This

is done by using different timesteps for differ-

ent parts of a system. In this work, we develop

a new theoretical framework for construct-

ing and analyzing multirate methods based

on general linear methods. The newly de-

rived methods strike a balance between sta-

bility and accuracy that cannot be achieved by

existing multirate methods based on the pop-

ular Runge–Kutta and linear multistep meth-

ods. Numerical experiments are performed to

confirm the theoretical properties of the meth-

ods. Finally, we introduce coupled multirate

infinitesimal methods, which offer a differ-

ent perspective onmultiratemethods and have

great stability and flexibility in implementa-

tion.

Introduction

In this report, we consider the autonomous

system of ordinary differential equations

(ODEs)

y′ = f(y), y(t0) = y0, (1)

where f : Rd → Rd. Equations of this

form are ubiquitous in the modeling and

simulation of physical phenomena such as

fluid flow, chemical reactions, and electric

circuits. For these reasons, NASA has a

long history of developing methods to solve

eq. (1).1,4–7,10–12,14,15,21 Some of the most com-

mon families of method for numerically solv-

ing ODEs are the Runge–Kutta and linear

multistep methods. One limitation of these

methods is that they use a global timestep

to move from one state to the next. Many

systems of practical interest combine com-

plex processes that move on vastly different

time scales. The fastest dynamics of the sys-

tem impose a relatively small global step size

even if they comprise a small portion of the

system. Also, there may be optimal time-

steppingmethods for individual parts of a sys-

tem but no satisfactory method for the whole

problem.

Instead of treating f entirely as a black box,
it can be additively partitioned into subfunc-

tions:

y′ = f(y) =
N∑

m=1

f {m}(y). (2)

Partitioned methods use different base meth-

ods for the different partitions, allowing for

a more targeted and efficient method overall.

Some types include implicit-explicit (IMEX)

andmultirate methods, the latter of which will

be the primary focus of this paper. Multi-

rate methods use different timesteps for each

f {m} to overcome the aforementioned chal-

lenges faced by singlerate methods. The idea

traces back to the 1960s17 and has struggled to

gain traction outside a small number of fields

such as electric circuit simulation. The lack of

widespread adoption is due to several factors.

Deriving multirate methods is significantly
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more challenging than singlerate methods, es-

pecially at high orders. In previous work,20

we derive multirate Runge–Kutta methods up

to order four, but extending this to fifth or-

der and higher starts to become very challeng-

ing due to large number of order conditions.

Deriving multirate linear multistep methods

is much easier13, but the so-called Dahlquist

barriers limit their stability at high orders.8,9

In addition, multirate methods introduce cou-

pling error into the numerical solution, which

if not properly controlled, ruins any speedup

benefits.

We present new types of multirate methods

designed to overcome these limitations. First,

we discuss partitioned general linear method

as a theoretical foundation for the primary

focus of the report: multirate general linear

methods. New multirate general linear meth-

ods up to order four are derived and tested. Fi-

nally, coupledmultirate infinitesimal methods

are described. For brevity, we do not include

the full analyses and omit theorem proofs in

this report. Interested readers can find the full

details in corresponding papers.

Partitioned General Linear

Methods

General linear methods (GLMs) present a

large and flexible family of methods for solv-

ing eq. (1). One step is given by:

Y
[n]
i = H

s∑
j=1

ai,jf
(
Y

[n]
j

)
+

r∑
j=1

ui,jξ
[n−1]
j ,

i = 1, . . . , s,

(3a)

ξ
[n]
i = H

s∑
j=1

bi,jf
(
Y

[n]
j

)
+

r∑
j=1

vi,jξ
[n−1]
j ,

i = 1, . . . , r.

(3b)

The internal stage Y
[n]
i approximates the so-

lution y(tn−1 + ciH) and the external stage

ξ
[n]
i contains derivative information of the so-

lution:

ξ
[n−1]
i =

p∑
k=0

qi,kH
ky(k)(tn−1) +O

(
Hp+1

)
.

(3c)

With high stage order, the order conditions for

GLMs are relatively simple.2,3 Further, they

can still have excellent stability properties.

For these reasons, GLMs can serve as a solid

foundation for practical multirate time inte-

gration methods.

The theory for partitioned GLMs is rela-

tively new and is mostly limited to IMEX

methods.22 This existing work is not gen-

eral enough to describe multirate GLMs. In-

stead of directly developing the order condi-

tions, stability analysis, and theory for multi-

rate GLMs, we first describe a very general

framework for partitioned GLMs. Much of

the results on multirate GLMs will follow as

simple special cases.

Method Definition

One step of a partitioned GLM reads:

Y
{σ}[n]
i = H

N∑
ν=1

s{ν}∑
j=1

a
{σ,ν}
i,j f {ν}

(
Y

{ν}[n]
j

)

+
N∑
ν=1

r{ν}∑
j=1

u
{σ,ν}
i,j ξ

{ν}[n−1]
j ,

i = 1, . . . , s{σ}, σ = 1, . . . , N,

(4a)

ξ
{σ}[n]
i = H

N∑
ν=1

s{ν}∑
j=1

b
{σ,ν}
i,j f {ν}

(
Y

{ν}[n]
j

)

+
N∑
ν=1

r{ν}∑
j=1

v
{σ,ν}
i,j ξ

{ν}[n−1]
j ,

i = 1, . . . , r{σ}, σ = 1, . . . , N.

(4b)

Compared to eq. (3), both the internal and ex-

ternal stages are now partitioned and combine

information from all other partitions. Similar

to the unpartitioned setting, the internal stage

Y
{σ}[n]
i approximates the solution y(tn−1 +
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c
{σ}
i H) and the external stage ξ

{σ}[n]
i contains

derivative information of the solution:

ξ
{σ}[n]
i =

N∑
ν=1

p∑
k=0

q
{σ,ν}
i,k Hk d

ky{ν}

dtk
(tn−1)

+O
(
Hp+1

)
.

(5)

The coefficients can be organized into an ex-

tended tableau shown in fig. 1.

Order Conditions

Here, we consider the conditions on the

method coefficients that ensure a method is of

a certain order of accuracy. It is often the case

that higher order methods are more efficient,

but they are more challenging to derive.

First, we consider the conditions required

for eq. (4) to solve the simple system

y′ = 0, y(t0) = κ =
N∑

σ=1

κ{σ}. (6)

When a partitioned GLM is applied to eq. (6),

the internal stages are

Y {σ}[n]

=
N∑

µ=1

(
N∑
ν=1

U{σ,ν}q
{ν,µ}
0

)
κ{µ} +O(H),

and the external stages are

ξ{σ}[n]

=
N∑

µ=1

(
N∑
ν=1

V{σ,ν}q
{ν,µ}
0

)
κ{µ} +O(H).

The exact solution to eq. (6) is y(t) = κ,
so we expect a partitioned GLM to satisfy

Y {σ}[n] = κ1s{σ} + O(H) and ξ{σ}[n] =∑N
ν=1 q

{σ,ν}κ{ν} +O(H). This motivates the

following definition.

Definition 1 A partitioned GLM is precon-

sistent if

N∑
ν=1

U{σ,ν}q
{ν,µ}
0 = 1s{σ} ,

N∑
ν=1

V{σ,ν}q
{ν,µ}
0 = q

{σ}
0 ,

for σ, µ = 1, . . . , N .

Theorem 1 Assume that ξ
{σ}[n−1]
i satisfies

eq. (5). A preconsistent partitioned GLM

eq. (4) has order p and stage order q = p− 1
or q = p if and only if for all σ, ν = 1, . . . , N :

0 =
c{σ}×k

k!
− A{σ,ν}c{ν}×(k−1)

(k − 1)!

−
N∑

µ=1

U{σ,µ}q
{µ,ν}
k , k = 1, . . . , q,

0 =
k∑

`=0

q
{σ,ν}
k−`

`!
− B{σ,ν}c{ν}×(k−1)

(k − 1)!

−
N∑

µ=1

V{σ,µ}q
{µ,ν}
k , k = 1, . . . , p.

Linear Stability

A standard assessment of a time integration

method is the linear stability analysis, which

considers the amplification of errors from step

to step for a scalar, linear test problem. In the

context of partitioned methods, the standard

test problem generalization is

y′ =
N∑

σ=1

λ{σ}y,

where each λ{σ} ∈ C. Applying this problem
to eq. (4) yields

ξ[n] = M(Z)ξ[n−1],

M(Z) := V+ BZ(I − AZ)−1U,
(7)

where

Z = diag
(
z{1}I, . . . , z{N}I

)
,

and each z{σ} = Hλ{σ}.

Definition 2 The stability region of a parti-

tioned GLM is the set{
z{1}, . . . , z{N} ∈ C

: M(Z) power bounded} .

A large stability region is a desirable property

as it allows for stiffer problems to be solved

without error accumulation ruining the solu-

tion.
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A B

U V
:=

A{1,1} . . . A{1,N} U{1,1} . . . U{1,N}

...
. . .

...
...

. . .
...

A{N,1} . . . A{N,N} U{N,1} . . . U{N,N}

B{1,1} . . . B{1,N} V{1,1} . . . V{1,N}

...
. . .

...
...

. . .
...

B{N,1} . . . B{N,N} V{N,1} . . . V{N,N}

.

Figure 1: Tableau for a partitioned GLM.

Partitioned GLM Example

To demonstrate the flexibility of this new

partitioned GLM framework, we present a

method that combines the third orderAdams–

Bashforth method with the third order Radau

IIAmethod:

0 0 0 1 23
12

−4
3

5
12

1

17
20

5
12

− 1
12

1 839
1620

− 49
1620

− 7
1620

1

2 3
4

1
4

1 1
2

−1 1
2

1

0 0 0 1 23
12

−4
3

5
12

0

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 3
4

1
4

0 0 0 0 1

.

This method preserves the third order of the

base methods and has stage order two. To our

knowledge, this is the first high-order method

combining a Runge–Kutta and linear multi-

step method. Moreover, this demonstrates the

potential of this framework outside of multi-

rate GLMs.

Multirate General Linear

Methods

In the context of multirate methods, it is com-

mon to consider a two-partitioned version of

eq. (2):

y′ = f {f}(y) + f {s}(y). (8)

The fast dynamics are contained in f {f}, and

the slow dynamics are contained in f {s}.

Now, we define a fast GLMmethod G{f} with

the coefficients A{f,f}, B{f,f}, U{f,f}, V {f,f},

Q{f,f} and c{f} and a slow base method G{s}

with A{s,s}, B{s,s}, U{s,s}, V {s,s}, Q{s,s}, and

c{s}. Following the multirate idea, we would

like to integrate f {s} with G{s} using a time

step H and integrate f {f} with G{f} using a

time step h = H/M . The multirate ratio M
is a positive integer.

One step of a multirate GLM is as follows.

The slow stages are given by

Y
{s}[n]
i = H

s{s}∑
j=1

a
{s,s}
i,j f {s}

(
Y

{s}[n]
j

)

+ h
M∑
λ=1

s{f}∑
j=1

a
{s,f,λ}
i,j f {f}

(
Y

{f,λ}[n]
j

)

+
r{s}∑
j=1

u
{s,s}
i,j ξ

{s}[n−1]
j

+
r{f}∑
j=1

u
{s,f}
i,j ξ

{f}[n−1]
j ,

(9a)

where i = 1, . . . , s{s}. The fast stages for mi-
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crostep λ are given by

Y
{f,λ}[n]
i = h

s{f}∑
j=1

a
{f,f}
i,j f {f}

(
Y

{f,λ}[n]
j

)

+H

s{s}∑
j=1

a
{f,s,λ}
i,j f {s}

(
Y

{s}[n]
j

)

+
r{f}∑
j=1

u
{f,f}
i,j ξ̃

{f}[n−1+(λ−1)/M ]
j

+
r{s}∑
j=1

u
{f,s,λ}
i,j ξ

{s}[n−1]
j ,

(9b)

where λ = 1, . . . ,M and i = 1, . . . , s{f}. The
intermediate external stages are updated each

microstep by

ξ̃
{f}[n−1+λ/M ]
i = h

s{f}∑
j=1

b
{f,f}
i,j f {f}

(
Y

{f,λ}[n]
j

)

+
r{f}∑
j=1

v
{f,f}
i,j ξ̃

{f}[n−1+(λ−1)/M ]
j ,

(9c)

where i = 1, . . . , s{f}. Finally, the fast exter-
nal stages are simply

ξ
{f}[n]
i = ξ̃

{f}[n−1+M/M ]
i , (9d)

where i = 1, . . . , r{f}, and the slow external

stages are computed by

ξ
{s}[n]
i = H

s{s}∑
j=1

b
{s,s}
i,j f {s}

(
Y

{s}[n]
j

)

+
r{s}∑
j=1

v
{s,s}
i,j ξ

{s}[n−1]
i ,

(9e)

where i = 1, . . . , r{s}.
The partitioned GLM tableau for eq. (9)

takes the form

A{f,f} A{f,s} U{f,f} U{f,s}

A{s,f} A{s,s} U{s,f} U{s,s}

B{f,f} 0 V{f,f} 0

0 B{s,s} 0 V{s,s}

. (10)

The fast blocks of eq. (10) come from ex-

pressing M steps of G{f} with time step h as

one step of a GLMG{f} with time stepH . The

coefficients of G{f} are given in fig. 2. The

slow blocks are much simpler, as the coeffi-

cients map directly to the base method:

A{s,s} U{s,s}

B{s,s} V{s,s}
:=

A{s,s} U{s,s}

B{s,s} V {s,s}
.

Order Conditions

We can now leverage the order condition re-

sults from the previous section to determine

the order conditions for a multirate GLM.

Theorem 2 Assume that ξ
{σ}[n−1]
i satisfies

eq. (5). A preconsistent partitioned GLM

eq. (4) has order p and stage order q ∈ {p, p−
1} if and only ifG{f} andG{s} have order p and
stage order q and for k = 1, . . . , q:

0 =

(
c{f} + (λ− 1)1s{f}

)k
Mkk!

− U{f,s,λ}q
{s,s}
k

− A{f,s,λ}c{s}×(k−1)

(k − 1)!
, λ = 1, . . . ,M,

0 =
Mkc{s}×k

k!
− U{s,f}q

{f,f}
k

−
M∑
λ=1

A{s,f,λ} (c{f} + (λ− 1)1s{f}
)k−1

(k − 1)!
.

New Methods

Explicit methods are the first type of multirate

GLM derived, with implicit methods being a

subject of future work. We choose G{f} and

G{s} to be the same since it allows the mul-

tirate methods to easily be applied telescopi-

cally to more than two partitions. Another de-

sirable feature is method coefficients that are

bounded for all multirate ratios. With these

design principles in mind, we derive parame-

terized families of methods up to order four.

We start with the a parameterized GLM

with c = [0, 1]T of order two or possibly order
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A{f,f} U{f,f}

B{f,f} V{f,f}
:=

1
M
A{f,f} U{f,f}

1
M
U{f,f}B{f,f} 1

M
A{f,f} U{f,f}V {f,f}

...
...

. . .
...

1
M
U{f,f}V {f,f}×(M−2)B{f,f} 1

M
U{f,f}V {f,f}×(M−3)B{f,f} . . . 1

M
A{f,f} U{f,f}V {f,f}×(M−1)

1
M
V {f,f}×(M−1)B{f,f} 1

M
V {f,f}×(M−2)B{f,f} . . . 1

M
B{f,f} V {f,f}×M

Figure 2: Tableau generated by composition ofM steps.

three:

0 0 1 0

a2,1 0 0 1
(2a2,1−1)v1,2+1

2

1−v1,2
2

1− v1,2 v1,2
(2a2,1−1)v2,2

2

4−2a2,1−v2,2
2

1− v2,2 v2,2

.

(11a)

The corresponding coupling coefficients to

preserve the order are

A{f,s,λ} =

 (λ−1)(M−λ+(λ−1)a2,1+1)

M2 0
λ(M−λ+λa2,1)

M2 0

 ,
(11b)

A{s,f,λ} =

 0 0
λ−(λ−4)a2,1−1

3
a
{s,f,λ}
2,2

 ,
a
{s,f,λ}
2,2 = (λ−1)(a2,1−1)(4(M−5)a2,1−4M+23)

3(4(M+1)a2,1−4M−1)
,

(11c)

U{f,s,λ} =

M2−(λ−1)2

M2

(λ−1)2

M2

1− λ2

M2
λ2

M2

 , (11d)

U{s,f} =

 1 0
(1−M)(4a2,1−1)

4(M+1)a2,1−4M−1
u
{s,f}
2,2

 ,
u
{s,f}
2,2 = M(8a2,1−5)

4(M+1)a2,1−4M−1
.

(11e)

We choose a2,1 = 2 and v1,2 = v2,2 = 1/2
for a second order method. Using a2,1 =
20/27 and v1,2 = v2,2 = 1/6 yields third or-

der. For brevity we omit the more complex

fourth order family, which will be provided in

the subsequent publication.

Linear Stability

The stability analysis follows from substitut-

ing the particular tableau structure in eq. (10)

into the general stability function eq. (7). To

simplify the visualization of the stability re-

gions, we consider the linear test problem

y′ =
Mλ

2
y︸ ︷︷ ︸

fast

+
λ

2
y︸︷︷︸

slow

, (12)

where λ ∈ C. In the spirit of multirate meth-

ods, the fast partition is M times stiffer than

the slow partition. Further, eq. (12) is scaled

such that when M = 1, we recover the stan-
dard test function y′ = λy. We are interested

in the set of z = Hλ for which a multirate

GLM is stable when applied to eq. (12). For

the second order method, the stability regions

are plotted in fig. 3. AsM increases, the sta-

bility region actually becomes slightly larger,

indicating excellent scaling. The third and

fourth orders methods see similar stability be-

havior. For comparison, a singlerate method

applied to eq. (12) will have a stability region

that shrinks to the origin asM grows.

Numerical Experiment: Gray–Scott

To confirm the theoretical properties of the

new multirate GLMs and to test their effi-

ciency, we apply them to the Gray–Scott par-

tial differential equation:[
u
v

]′
︸︷︷︸
y′

=

[
εu∆u
εv∆v

]
︸ ︷︷ ︸
f{s}(y)

+

[
−uv2 + f(1− u)
uv2 − (f + k)

]
︸ ︷︷ ︸

f{f}(y)

.

(13)

The parameters are taken to be εu = 2×10−6,

εv = 10−6, f = 0.04, and k = 0.06. The
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Figure 3: Multirate stability regions for second order method

domain is periodic over [0, 2.5]2 and is dis-

cretized into a 100× 100 grid with second or-
der central differences. Experiments are run

from t = 0 to t = 100 using the third order

method.

In fig. 4, the error versus the number of

steps is provided. We can see the method

matches the expected order for each multirate

ratio M , and that increasing M reduces the

error.

10 2 10 3 10 4

Steps

10 -12

10 -10

10 -8

10 -6

10 -4

E
rr

or

M = 1
M = 2
M = 4
M = 8
Order 3

Figure 4: Convergence plot for third order

multirate GLM.

In fig. 5, we compare the error versus time

to solution. The multirate method consis-

tently reaches a desired accuracy in less time

than the singlerate base method (M = 1).

10 -10 10 -5

Error

10 -1

10 0

10 1

10 2

T
im

e 
(s

)

M = 1
M = 2
M = 4
M = 8

Figure 5: Work precision plot for third order

multirate GLM.

Coupled Multirate

Infinitesimal GARK Methods

While not mentioned in the original proposal,

another topic of research on practical mul-

tirate time integration methods was coupled

multirate infinitesimal GARK (MRI-GARK)

methods. This work builds on the decou-

pled MRI-GARK methods of Sandu19 and

the original work of Knoth and Wolke on in-

finitesimal methods16. The defining charac-

teristic of infinitesimal methods is that they

combine a discretization of the slow dynam-

ics, say with a Runge–Kutta method, with

“exact” solves of modified ODEs for the fast

dynamics. Except in the simplest of cases,

it is infeasible to exactly solve these modi-

fiedODEs, so instead, a discretizationmethod

is used with an “infinitely” small time step,

thus motivating the name. These schemes are
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especially well-suited for problems with ex-

treme timescale differences. One of the most

appealing features of these methods, is that

any fast discretization method can be used

provided it is convergent.

Along with the recent work of Sandu19,

these are the first implicit infinitesimal meth-

ods. The primary benefit of coupled MRI-

GARK methods over other flavors of in-

finitesimal schemes is improved stability. We

explore two different coupling approaches,

which we briefly describe below. Interested

readers can see the full publication for addi-

tional details, including methods up to order

four.18

Step Predictor Corrector MRI-GARK

A step predictor corrector MRI-GARK (SCP-

MIR-GARK) scheme applied to eq. (8) ad-

vances the solution from tn to tn+1 as follows:

Yi = yn +H
s{s}∑
j=1

a
{s,s}
i,j f(Yj),

v(0) = yn,

v′ = f {f}(v) +
s{s}∑
j=1

γj
(

θ
H

)
f {s}(Yj),

yn+1 = v(H).

SCP-MIR-GARK methods start with tradi-

tional Runge–Kutta stages before solving a

single modified fast ODE to obtain a solution.

Unlike previous infinitesimal schemes, there

is no restriction on the type of base method.

It can be explicit, diagonally implicit, or even

fully implicit.

Internal Stage Predictor Corrector

MRI-GARK

One step of an internal stage predictor correc-

tor MRI-GARK (IPC-MRI-GARK) scheme

proceeds as follows:

Y0 := yn, c
{s}
0 := 0,

Y ∗
i = yn +H

i−1∑
j=1

a
{s,s}
i,j f(Yj)

+Ha
{s,s}
i,i f(Y ∗

i )

vi(0) = Yi−1,

v′i = ∆c
{s}
i f {f}(vi)

+
i−1∑
j=1

γi,j
(

θ
H

)
f {s}(Yj)

+
i∑

j=1

ψi,j

(
θ
H

)
f {s}(Y ∗

i ),

Yi = vi(H), i = 1, . . . , s{s},

yn+1 = Ys{s} .

IPC-MRI-GARK methods interleave Runge–

Kutta stages and infinitesimal integrations.

For this reason, the base method must have

nonincreasing abscissa and an explicit or di-

agonally implicit structure.

Conclusion

Multirate GLMs and coupled MRI-GARK

methods offer efficient, practical ways to

solve ODEs that exhibit multiple characteris-

tic timescales. The former is built on a new

theoretical foundation of partitioned GLMs,

which is currently the most general frame-

work for time integration and opens the door

to new types of multi-methods.

Areas of future work include multirate

GLMs with one or more implicit base meth-

ods and methods of order five. In addition to

the Gray–Scott test problem, we plan to ap-

ply these schemes to more sophisticated test

problems to examine properties such as order

reduction.
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