
LLNL-PRES-837422
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

Accelerating Time-Stepping Methods with 
Surrogate Models
SIAM Annual Meeting

Steven Roberts, Andrey A. Popov, Arash Sarshar, and Adrian SanduJuly 13, 2022
Sidney Fernbach Postdoctoral Fellow



2
LLNL-PRES-837422

§ Consider the initial value problem

𝑦! = 𝑓 𝑦 , 𝑦 𝑡" = 𝑦" ∈ ℂ#, 𝑡 ∈ 𝑡", 𝑡$ .

§ We will focus on explicit methods for nonstiff problems.

§ In scientific applications, the dimension 𝑁 can be intractably large and evaluations of 
𝑓 prohibitively expensive.

§ How can we reduce the number of evaluations of 𝑓 without sacrificing
— Accuracy
— Stability
— Convergence

Goal: solve large-scale initial value problems
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§ For many problems, it is possible to produce a cheap but approximate surrogate 
model.

§ For complex problems, surrogate models cannot outright replace the full model 𝑓.

What about surrogate models?

Machine Learning Coarser Mesh Reduced-Order Model
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§ For convergence, we cannot escape evaluating the full model.

§ An ideal hybrid approach would use the surrogate model to substantially reduce 
evaluations of the full model.

§ Surrogate models have been successfully incorporated into optimization algorithms.

§ There are some related ideas in the context of time integration
— Rosenbrock-W methods
— Coupling a reduced order model and multirate method1

— Defect correction
— Heterogeneous multiscale method2

How can we combine full and surrogate models?

1. Hachtel, Christoph, et al. "Multirate DAE/ODE-simulation and model order reduction for coupled field-circuit systems." Scientific Computing in Electrical Engineering. Springer, 
Cham, 2018. 91-100.

2. Abdulle, Assyr, et al. "The heterogeneous multiscale method." Acta Numerica 21 (2012): 1-87.
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§ Recall the full model we want to integrate is

𝑦! = 𝑓 𝑦 , 𝑦 𝑡 ∈ ℂ#.

§ The surrogate model is also posed as an ODE:

𝑦%&'! = 𝑓%&' 𝑦%&' , 𝑦%&' 𝑡 ∈ ℂ(.

§ The surrogate model may evolve in a lower-dimensional space: 𝑆 < 𝑁.

§ Transformations between the full and surrogate spaces are realized by 𝑉,𝑊 ∈ ℂ#×(:

𝑦%&' = 𝑊∗𝑦, 𝑦 ≈ 𝑉𝑦%&', 𝑊∗𝑉 = 𝐼(×(.

Defining the surrogate model
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§ The original, full ODE can be rewritten in the equivalent form

𝑦! = 𝑉𝑓%&' 𝑊∗𝑦 + 𝑓 𝑦 − 𝑉𝑓%&' 𝑊∗𝑦 ∈ ℂ#.

§ Idea: apply a multirate method to this ODE.
— The “fast” partition is the surrogate model and is treated with a small timestep.
— The “slow” partition is the surrogate error and is treated with a large timestep.

§ The surrogate model is evaluated often to guide the solution trajectory while the 
expensive full model is evaluated infrequently to correct for surrogate errors.

§ Accuracy, stability, and convergence properties are based on the underlying multirate
method.

Surrogate acceleration with multirate methods
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§ With 6 decades of development, there are many options!

§ Multirate infinitesimal (MRI) methods have gain traction in recent years.
— Fast dynamics are evolved by solving ODEs with any consistent integrator.
— Very flexible

§ MRI methods based on Runge-Kutta methods
— Knoth, Oswald, and Ralf Wolke. "Implicit-explicit Runge-Kutta methods for computing atmospheric 

reactive flows." APNUM (1998)
— Sandu, Adrian. "A class of multirate infinitesimal GARK methods." SINUM (2019)
— Roberts, Steven, Arash Sarshar, and Adrian Sandu. "Coupled multirate infinitesimal GARK schemes 

for stiff systems with multiple time scales." SISC (2020)

§ MRI methods based on linear multistep methods
— Demirel, Abdullah, et al. "Efficient multiple time-stepping algorithms of higher order." JCP (2015)

Which multirate methods should we use?
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§ Our multirate ODE is

𝑦! = 𝑓 $ 𝑦 + 𝑓 % 𝑦 .

§ Consider the simple multirate infinitesimal method

𝑣 0 = 𝑦+,
𝑣! 𝜃 = 𝑓 $ 𝑣 𝜃 + 𝑓 % 𝑦+ ,
𝑦+,- = 𝑣 𝐻 .

§ There is one evaluation of 𝑓 % per step.

§ 𝑓 $ is evaluated as many times as it takes to integrate 𝑣 to 𝜃 = 𝐻.

Multirate Euler method example
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§ When we apply the multirate Euler method to our ODE, we arrive at

𝑧 0 = 𝑊∗𝑦+,
𝑧! 𝜃 = 𝑓%&' 𝑧 𝜃 +𝑊∗𝑓 𝑦+ − 𝑓%&' 𝑊∗𝑦+ ,
𝑦+,- = 𝑉 𝑧 𝐻 + 𝐼#×# − 𝑉𝑊∗ 𝑦+ +𝐻 𝑓 𝑦+ .

§ 𝑧 𝜃 ∈ ℂ( is integrated in the range of 𝑉.

§ An Euler step is taken in the nullspace of 𝑊∗.

§ There is one evaluation of the full model per step and many for the surrogate model.

Multirate Euler method example 𝑦! = 𝑉𝑓"#$ 𝑊∗𝑦 + 𝑓 𝑦 − 𝑉𝑓"#$ 𝑊∗𝑦
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Illustration of the time-stepping approach
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§ Let’s replace multirate Euler with MRI-GARK to achieve higher orders.

§ A surrogate model MRI-GARK (SM-MRI-GARK)1 method is given by

𝑌! = 𝑦",
𝑧# 0 = 𝑊∗𝑌# ∈ ℂ%,

𝑧#& 𝜃 = Δ𝑐#
' 𝑓'() 𝑧# 𝜃 +/

*+!

#,!

𝛾#,*
𝜃
𝐻

𝑊∗𝑓 𝑌* − 𝑓'() 𝑊∗𝑌* ,

𝑌#,! = 𝑉 𝑧# 𝐻 + 𝐼.×. − 𝑉𝑊∗ 𝑌# + 𝐻/
*+!

#,!

�̅�#,*𝑓 𝑌* , 𝑖 = 1, … , 𝑠 ' ,

𝑦",! = 𝑌' ! ,!.

SM-MRI-GARK

1. Roberts, Steven, et al. "A Fast Time-Stepping Strategy for Dynamical Systems Equipped with a Surrogate Model." SIAM Journal on Scientific Computing 44.3 
(2022): A1405-A1427.

𝑦! = 𝑉𝑓"#$ 𝑊∗𝑦 + 𝑓 𝑦 − 𝑉𝑓"#$ 𝑊∗𝑦
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§ If instead we base our method on SPC-MRI-GARK we have the class of surrogate 
model SPC-MRI-GARK (SM-SPC-MRI-GARK)1:

𝑌# = 𝑦" + 𝐻/
*+!

' !

𝑎#,*
' 𝑓 𝑌* , 𝑖 = 1, … , 𝑠 ' ,

𝑧 0 = 𝑊∗𝑦" ∈ ℂ%,

𝑧& 𝜃 = 𝑓'() 𝑧 𝜃 +/
*+!

' !

𝛾*
𝜃
𝐻

𝑊∗𝑓 𝑌* − 𝑓'() 𝑊∗𝑌* ,

𝑦",! = 𝑉 𝑧 𝐻 + 𝐼.×. − 𝑉𝑊∗ 𝑦" + 𝐻/
*+!

' !

𝑏*𝑓 𝑌*

SM-SPC-MRI-GARK

1. Roberts, Steven, et al. "A Fast Time-Stepping Strategy for Dynamical Systems Equipped with a Surrogate Model." SIAM Journal on Scientific Computing 44.3 
(2022): A1405-A1427.

𝑦! = 𝑉𝑓"#$ 𝑊∗𝑦 + 𝑓 𝑦 − 𝑉𝑓"#$ 𝑊∗𝑦
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§ The Lorenz ‘96 is a 40 variable ODE

𝑑𝑋5
𝑑𝑡

= −𝑋567𝑋56- + 𝑋56-𝑋5,- − 𝑋5 + 𝐹.

§ In an offline phase, 5000 snapshots of the 
trajectory and its derivative were generated 
over the timespan [2, 10].

§ A 3-layer neural network was trained on the 
data to approximate the RHS function 𝑓.

§ The neural network acts as 𝑓%&', and 𝑉 =
𝑊 = 𝐼8"×8".

Numerical experiment: Lorenz ‘96



14
LLNL-PRES-837422

Numerical experiment: Lorenz ‘96
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§ Consider the Molenkamp-Crowley problem

𝜕𝑢
𝜕𝑡
+ 𝑎 ⋅ 𝛻𝑢 = 0, on Ω = 0,1 7,

𝑢 = 0, on 𝜕Ω,

with the circular wind profile 𝑎 𝑥, 𝑦 .

§ 𝑓 corresponds to a discontinuous Galerkin
discretization on a 100×100 uniform triangular 
mesh, while 𝑓%&' uses a 50×50 mesh.

§ 𝑉 and 𝑊∗ are sparse interpolation operators.

Numerical experiment: DG advection
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Numerical experiment: DG advection
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§ New methods extend traditional Runge-Kutta and linear multistep methods to 
incorporate information from a surrogate model.

§ This work broadens the scope and applicability of multirate methods.

§ The quality of the surrogate model does not affect the order of convergence.

§ Experiments show large speedups over traditional integrators, especially when 𝑉, 𝑊∗, 
and 𝑓%&' are inexpensive.

§ Future work
— Additional testing of methods based on linear multistep methods
— Support for surrogate models that are flow maps instead of ODEs

Conclusions
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