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Why use multirate methods?

Many dynamical systems exhibit multiple characteristic timescales.

y ′ = f (y) = f {f}(y) + f {s}(y)

Example: Wind, temperature, and salinity in a simplified climate model.
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What are multirate methods?

I Integrate the slow partition with Runge–Kutta method
(
A{s,s}, b{s}

)
using a stepsize H

I Integrate the fast partition with Runge–Kutta method
(
A{f,f}, b{f}

)
using a stepsize h = H/M

I M is called the multirate ratio

I Coupling information needs to be shared between slow and fast
integrations

I Why use implicit method for both fast and slow dynamics?
I Adapting timesteps to accuracy requirements can improve efficiency
I Decoupled methods simplify Newton iterations
I Certain parts of system may slow down Newton iterations

Steven Roberts

SIAM CSE 2019

Introduction to Multirate Methods. [2/20]

m csl.cs.vt.edu

csl.cs.vt.edu


Multirate Runge–Kutta
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Predictor-corrector multirate Runge–Kutta
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GARK provides a theoretical foundation I
A generalized-structure additively partitioned Runge–Kutta (GARK)
method with two partitions reads

Y
{f}
i = yn + H

s{f}∑
j=1

a
{f,f}
i,j f {f}

(
Y
{f}
j

)
+ H

s{s}∑
j=1

a
{f,s}
i,j f {s}

(
Y
{s}
j

)
, i = 1, . . . s{f},

Y
{s}
i = yn + H

s{f}∑
j=1

a
{s,f}
i,j f {f}

(
Y
{f}
j

)
+ H

s{s}∑
j=1

a
{s,s}
i,j f {s}

(
Y
{f}
j

)
, i = 1, . . . s{s},

yn+1 = yn + H
s{f}∑
j=1

b
{f}
j f {f}

(
Y
{f}
j

)
+ H

s{s}∑
j=1

b
{s}
j f {s}

(
Y
{s}
j

)
.

The corresponding tableau is

A{f,f} A{f,s}

A{s,f} A{s,s}

b{f}T b{s}T
.

Often assume internal consistency: c{f} ≡ A{f,f}1s{f} = A{f,s}1s{s} and
c{s} ≡ A{s,f}1s{f} = A{s,s}1s{s} .
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GARK provides a theoretical foundation II

MrGARK:
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Substitute these structures into GARK order conditions and stability.
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Even linear stability analysis is challenging

“. . . little theoretical study has been made on the accuracy and stability of
such methods.” Gear, Multirate methods for ordinary differential equations

“Stability properties of various multirate schemes have been discussed . . . .
However, most of these discussions are not very detailed, nor very
conclusive.” Kværnø, “Stability of multirate Runge–Kutta schemes”

“Even though the multirate scheme considered in this paper is quite
simple, the stability analysis will turn out to be complicated.” Hundsdorfer
& Savcenco, “Analysis of a Multirate Theta-method for Stiff ODEs”
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How can linear stability be assessed?
For a simple test problem, find conditions that ensure errors are not
amplified from step to step. There are many choices of test problems:

I Scalar test problem:
y ′ = λ{f}y + λ{s}y .

I 2D test problem: [
y{f}

y{s}

]′
=

[
λ{f} η{s}

η{f} λ{s}

]
︸ ︷︷ ︸

Λ

[
y{f}

y{s}

]
.

I 2x2 block test problem:[
y{f}

y{s}

]′
=

[
Λ{f} E {s}

E {f} Λ{s}

] [
y{f}

y{s}

]
.

I And others. . .
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Comparison of stability

Scalar test problem

I Let z{f} = Hλ{f} and z{s} = Hλ{s}.

I A-Stability:
∣∣R1(z{f}, z{s})

∣∣ ≤ 1 for all z{f}, z{s} ∈ C−

I L-Stability: A-stability and R1 → 0 as z{f} → −∞ and z{s} → −∞
2D test problem

I Let Z = HΛ.

I A-Stability: R2(Z ) power bounded for all Z exponentially bounded
with z{f}, z{s} ∈ C−

I L-Stability: A-stability and
[
1 0

]
R2 → 0 as z{f} → −∞ and[

0 1
]
R2 → 0 as z{s} → −∞

Algebraic stability

I If f {f} and f {s} are dissipative, then ‖yn+1 − ỹn+1‖ ≤ ‖yn − ỹn‖.
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Our findings on stability analysis

I E-Polynomial can be generalized for scalar test problem

I The scalar and 2D stability functions are related:

R1

(
z{f}, z{s}

)
=
[
1 1

]
R2

([
z{f} z{f}

z{s} z{s}

])[
α

1− α

]
.

I There are algebraically stable methods that are conditionally stable
for the 2D problem.

Theorem
If a GARK method is A-stable with respect to the 2D test problem, then it
is A-stable with respect to the scalar test problem.

Theorem
A decoupled GARK method is conditionally stable for the 2D test problem.
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GARK stability hierarchy

2D L-Stability 2D A-Stability

Scalar L-Stability Scalar A-Stability

Algebraic Stability

?
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New general stability function for predictor-corrector
MrGARK

Starting with the GARK scalar stability function

R1

(
z{f}, z{s}

)
= 1 + bTZ(I − AZ)−1

1, Z =

[
z{f}I 0

0 z{s}I

]
,

we can derive the stability function for a predictor-corrector MrGARK
method

R1

(
z{f}, z{s}

)
= R

(
z{f}

M

)M

+ z{s}

bT +
z{f}

M
bT
(
Is×s −

z{f}

M
A

)−1 M∑
λ=1

R

(
z{f}

M

)M−λ

A{f,s,λ}

 Rint(z),

with z = z{f} + z{s}.
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Stability guides method derivation

I Scalar stability most practical, but 2D more insightful

I Interesting result at first order:

Theorem
An internally consistent MrGARK method of order exactly one is
conditionally stable for all but a finite number of multirate ratios.
I Methods derived up to order four

I Both coupling strategies
I Based on SDIRK methods
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Stability of new fourth order method

S1d
α,ρ =

{
z{s} ∈ C

∣∣∣ ∣∣∣R1

(
z{f}, z{s}

)∣∣∣ ≤ 1, ∀z{f} ∈ C− :
∣∣∣z{f}∣∣∣ ≤ ρ, ∣∣∣arg

(
−z{f}

)∣∣∣ ≤ α}
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Figure: Stability region S1d80◦,∞ for different M
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The Gray–Scott model[
u
v

]′
︸︷︷︸
y ′

=

[
∇ · (εu∇u)
∇ · (εv∇v)

]
︸ ︷︷ ︸

f {s}(y)

+

[
−uv2 + f(1− u)
uv2 − (f + k)

]
︸ ︷︷ ︸

f {f}(y)

Steven Roberts

SIAM CSE 2019

Numerical Experiments. [15/20]

m csl.cs.vt.edu

csl.cs.vt.edu


Gray–Scott convergence test I
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Gray–Scott convergence test II
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Conclusions

I Linear stability is surprisingly challenging for multirate methods.
I GARK provides overarching framework to analyze multriate

Runge–Kutta methods.
I Order conditions
I Stability

I We derive general stability results and fundamental stability
limitations.

I New methods are derived up to order four.
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Thank you

Website: https://steven-roberts.github.io/

Related work

I Explicit-explicit, implicit-explicit, and explicit-implicit MrGARK
methods:
Sarshar, A. et al. Design of High-Order Decoupled Multirate GARK
Schemes. arXiv preprint arXiv:1804.07716 (2018)

I MrGARK methods as M →∞ become infinitesimal methods:
Roberts, S. et al. Coupled Multirate Infinitesimal GARK Schemes for
Stiff Systems with Multiple Time Scales. arXiv preprint
arXiv:1812.00808 (2018)
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