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Solving large-scale systems of ODEs

m Consider the system of ordinary differential equations (ODEs)

Y =f(y), y(t)=w, yeCV

m We will limit our focus to nonstiff systems.

m In many scientific applications, f can be prohibitively expensive and the dimension N
intractably large.

m This is common in method of lines discretized PDEs that require a fine spatial mesh.
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What about surrogate models?

m In many cases, we can find a cheap but inaccurate surrogate model that approximates the
full model f.

m Examples:

EENNEER
BEEEE
BRUNE

(a) Model Order (b) Neural Network (c) Coarser Meshes
Reduction

m Integrating the surrogate model alone may lead to stability, accuracy, and convergence
issues.
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The best of both worlds: combining full and surrogate models

m How can we incorporate a surrogate model into the integration of f to reduce expensive
full model evaluations?

m In the context of optimization, surrogate models have proved successful in reducing
evaluations of expensive objective functions.
m There are some related ideas that can be used in the time-stepping context:

m Rosenbrock-W methods admit approximate Jacobians
Coupling of model order reduction and multirate methods®
Projective integration

High-order/low-order (HOLO) algorithms?

lHachteI, Kerler-Back, Bartel, Giinther, and Stykel, “Multirate DAE/ODE-Simulation and Model Order Reduction for Coupled Field-Circuit Systems”;
Bannenberg, Ciccazzo, and Giinther, “Coupling of model order reduction and multirate techniques for coupled dynamical systems”.

2Chacén et al., “Multiscale high-order/low-order (HOLO) algorithms and applications”.
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Surrogate model definition

m Suppose we have a surrogate model
Your = four(Your);  Your € C°.
m Recall that the full model was
y'=fly), yecV

m The surrogate model could evolve in lower-dimensional subspace: S < N.

= To move between the full and surrogate model spaces, we use V, W € CN*5:

Ysur = W*)/a y = Vysur, W*V = Isxs.
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Using multirating to combine full and surrogate models®

m Let's rewrite the original ODE as

y = VEu(W'y) + f(y) = VEu(W'y) € CV.
FII}(y) Fiok(y)

m Idea: Apply a multirate method to this ODE.
m The fast partition is the surrogate model and is treated with a small timestep.
m The slow partition is the surrogate model error and is treated with a large timestep.

m The surrogate model guides the solution while the occasional full model evaluation
corrects for surrogate model error and ensures convergence.

3Roberts, Popov, Sarshar, and Sandu, “A fast time-stepping strategy for ODE systems equipped with a surrogate model”.
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Multirate methods

m Any multirate method suitable for additively partitioned ODEs could be used.

m Multirate infinitesimal step* (MIS) and the multirate infinitesimal GARK® (MRI-GARK)
extensions make an excellent choice.

m Consider, for example, MIS/MRI Euler applied to y’ = 1T (y) + Fis}(y):

V(O) — yna
V(0) = FIH(v(0) + F5(y,),  for 6 € [0, H],
Yn+1 = V(H).

m Infinitesimal schemes blur the line between continuous and discrete methods and offer
wonderful flexibility in the treatment of £},

#Knoth and Wolke, “Implicit-explicit Runge—Kutta methods for computing atmospheric reactive flows”; Wensch, Knoth, and Galant, “Multirate infinitesimal
step methods for atmospheric flow simulation”.

SSandu, “A Class of Multirate Infinitesimal GARK Methods"; Roberts, Sarshar, and Sandu, “Coupled Multirate Infinitesimal GARK Schemes for Stiff Systems
with Multiple Time Scales”.
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Two types of multirate infinitesimal GARK methods

Step predictor-corrector MRI-GARK

(SPC-MRI-GARK):

MRI-GARK:
Yi=yn
V,(O):Y
i+1
= 1000+ 85, (8) ),

for 6 € [0, H],
\/H—l:‘/i(H)v i:l,.,.,${5}7
Y41 = Y(s} 41

s{s
Z "}f(v i=1,... st}

V(O) = yI‘H
(s}

W+ > u(E) =),
j=1

for 6 € [0, H],
Yn+1 = v(H).

v = flit
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Applying MRI-GARK to the ODE
m Now we apply an MRI-GARK method to
Y = V(W) + f(y) = Viu(Wy).
m This yields the surrogate model MRI-GARK (SM-MRI-GARK) method
Y1 = yn,
z(0) = W*Y; € C°,

i+1
2(0) = AL £ (zi(0 +Z~y,,(%) F(Y;) — four (W5Y})),  for 6 € [0, H],

i+1
Yit1 = Vzi(H) + (laxa — VW*) (Y,- + HZ'y,-,jf(Yj)) ,

=1

i=1,...,st3},

Yn+1 = Ys{5}+1'
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SM-MRI-GARK Euler

m When we use Euler's method as the base method and the coupling v1,1(t) = 1, we have
the simple method

z(0) = Wy,
21(0) = fSUF(Z(e)) + W*f(y") o fSur(W*yn)’ fOF 9 € [07 H]7
Ynt1 =Vz(H) + (laxd — VW) (ya + Hf (y5)) -

m An ODE is solved in the range of V.

m An Euler step is taken in the nullspace of W*.
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[llustration of SM-MRI-GARK

Nullspace of W*

Runge-Kutta stages to propagate full model

Range of V

Modified surrogate model integrated exactly

yi(t)
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SM-SPC-MRI-GARK

m We can also apply SPC-MRI-GARK to the ODE to get SM-SPC-MRI-GARK:

Sls)
—yn+HZ oY, i=1,...,s,

z(0) = W*y, € C°,
st

2(8) = + Z’YJ % ) - fsul‘(W* YJ))v

for 6 € [0, H]7

Sls}
Yor1 = Vz(H) + (laxa — VW¥) (yn +HY bjf(Yj)) :

j=t
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Numerical experiment: Lorenz '96 |

m The Lorenz '96 problem is given by
d Lorenz-96 at t=0.000e+00

an = —Xk—2Xk—1 + Xe—1 Xy1 — X + F, .

for k =1,2,...,40.

m In an offline phase, 5000 snapshots of the state
and its derivative were generated over the

timespan [2, 10]. s
m A 3-layer neural network was trained on this o0
data to learn the right-hand side function. a5

25 30 35 40

0 5 10 15 20
Variable Index

m The neural network is used as f;,; and
V =W = lsox40-
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Numerical experiment: Lorenz '96 I
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Numerical experiment: DG advection |

m Consider the Molenkamp—Crowley problem

ou £=0.000

E—i—a-Vu:O, on Q = [0,1] x [0, 1],
u=0, on 09,
with the circular wind profile
_[2m(y=3)
b= e o)

m f corresponds to a discontinuous Galerkin
discretization on a 100 x 100 uniform,
triangular mesh, while fy, uses a 50 x 50 mesh.

m V and W* are sparse interpolation operators.
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Numerical experiment: DG advection Il
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Conclusions

Surrogate model MRI-GARK extends traditional Runge—Kutta to incorporate a surrogate
model and improve efficiency.

m It combines continuous integration of a surrogate model with discrete evaluations of the
full model for error correction.

Quality of the surrogate model does not affect order of convergence.

The infinitesimal characteristic allows any method to be applied to the surrogate model.

Large speedups over traditional Runge—Kutta methods can be achieved, especially when
evaluations of V, W*, and f,, are cheap.
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Questions?

m Preprint available at:
https://arxiv.org/abs/2011.03688

m These slides are available on my website:
https://steven-roberts.github.io
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