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§ Accurate modeling of ice-sheets is 
critical to understanding and predicting
— Future sea level rise
— Potential regional collapses in the West 

Antarctic ice sheet

§ BISICLES is a simulation tool developed 
at LBNL, LANL, and the University of 
Bristol1

§ Long-term time evolution of these 
models requires accurate, conservative, 
and stable numerical methods

BISICLES Models Ice Sheet Dynamics 

1. Cornford, Stephen L., et al. "Adaptive mesh, finite volume modeling of marine ice sheets." JCP 232.1 (2013): 529-549.
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§ In the simplest case, the two primary variables are
— Ice thickness 𝐻(𝑡, 𝑥, 𝑦)
— Ice velocity 𝑣(𝑡, 𝑥, 𝑦)

§ An asymptotically-derived approximation to 
Stokes Flow is used1

𝜕𝐻
𝜕𝑡 =

𝜕
𝜕𝑥 𝑣!𝐻 +

𝜕
𝜕𝑦 𝑣"𝐻

𝛽#𝑣 − ∇ ⋅ 𝐻𝜇 𝑣 	∇𝑣 = −𝜌$𝑔𝐻	∇ ⋅ 𝑠𝑙%
!!
!

§ The Chombo library2 is used for the spatial 
discretization with adaptive mesh refinement 
(AMR)
— Second order finite volume method

The Ice Model Combines Hyperbolic and Elliptic Partial 
Differential Equations

From Cornford, Stephen L., et al. "Adaptive mesh, finite volume modeling of marine ice 
sheets." JCP 232.1 (2013): 529-549.

𝐻(𝑥, 𝑦)

1. Schoof, Christian, and Richard CA Hindmarsh. "Thin-film flows with wall slip: an asymptotic analysis of higher order glacier flow models." QJMAM 63.1 (2010): 73-114.
2. Colella, Phillip, et al. "Chombo software package for AMR applications design document." (2009).
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BISICLES was Limited by the Time Discretization

§ BISICLES uses an unsplit Godunov piecewise 
parabolic method
— First order accurate in time
— Explicit
— Not method of lines
— Limited maximum stable time step
— No error estimation
— Time step chosen by CFL condition based on 

assumption 

§ Project Goals
— Introduce high order time-stepping methods 

for improved accuracy and stability
• The focus will be explicit methods
• Implicit methods are sensible but difficult to 

implement
— Introduce adaptive timestep methods
— Determine which class of integrators is best-

suited to the problem

𝑡" 𝑡"#$𝑡" +
Δ𝑡
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$  but velocity from 𝑡!
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velocity from 
new thickness
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§ The time evolution problem is an index-1 differential-algebraic equation (DAE)

𝑑𝐻
𝑑𝑡

= 𝑓(𝐻, 𝑣)
0 = 𝑔 𝐻, 𝑣

§ Over 90% of the runtime is spent solving the nonlinear system 0 = 𝑔(𝐻, 𝑣)!

§ Or we can view this as an ordinary differential equation (ODE) where 𝑣 = 𝒢 𝐻  is a 
derived quantity computed via a nonlinear solve. This is the “state space form”1

𝑑𝐻
𝑑𝑡

= 𝑓 𝐻, 𝒢 𝐻

We can Solve an Ordinary or Differential-Algebraic Equation

1. Wanner, Gerhard, and Ernst Hairer. Solving ordinary differential equations II. Vol. 375. New York: Springer Berlin Heidelberg, 1996. Section VI.1
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SUNDIALS Provides Efficient ODE, DAE, and Nonlinear Solvers

• ARKODE provides (additive) Runge-
Kutta methods

• Adaptive or fixed step size
• We use explicit Runge-Kutta 

methods to solve the state space 
form %&

%'
= 𝑓 𝐻, 𝒢 𝐻

• N_Vectors decouple integrators 
from application data structures

• Includes norms, dot product, axpy, 
and other generic operations

• We developed a Chombo 
N_Vector to operate on AMR grids
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Our New Chombo N_Vector Enables Package Interoperability

Application code

Right-hand side function 𝑓 𝐻, 𝒢 𝐻

Time Discretization

Space Discretization

Ice Sheet Model

Chombo N_Vector
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§ BISICLES’ first order integrator does 1 expensive algebraic solve for ice velocity each time step

§ A second order, explicit Runge-Kutta applied to the state space form requires at least 2 
algebraic solves per time step

§ We proposed to use a second order “half-explicit1 Heun’s method” with 1 algebraic solve per 
step

𝐾, = 𝑓 𝐻-, 𝑣-
𝐾# = 𝑓 𝐻- + Δ𝑡	𝐾,, 𝑣-.,
0 = 𝑔 𝐻- + Δ𝑡	𝐾,, 𝑣-.,

𝐻-., = 𝐻- +
Δ𝑡
2 𝐾, + 𝐾#

§ It is not a traditional Runge-Kutta method but a generalized additive Runge-Kutta2.

Second Order is Feasible at the Cost of Order One
𝑑𝐻
𝑑𝑡 = 𝑓(𝐻, 𝑣)
0 = 𝑔 𝐻, 𝑣

1. Arnold, MarZn, Karl Strehmel, and Rüdiger Weiner. "Half-explicit Runge-Ku^a methods for semi-explicit differenZal-algebraic equaZons of index 1." Numerische Mathema>k 64 (1993): 409-431.
2. Sandu, Adrian, and Michael Günther. "A generalized-structure approach to addiZve Runge-Ku^a methods." SIAM Journal on Numerical Analysis 53.1 (2015): 17-42.
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Twisty Steam is a Benchmark Test Problem

§ Ice streams are fast-flowing regions within a 
sheet

§ Ice streams account for about 90% of ice mass 
lost from the Antarctic ice sheet1

§ We compare the temporal accuracy of
— The original unsplit Godunov piecewise parabolic 

method in BISICLES
— Explicit Runge-Kutta methods from ARKODE of order 1-

4
— The half-explicit Heun’s method from the previous slide

1. https://www.antarcticglaciers.org/glacier-processes/glacier-types/ice-streams/
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The Integrators Converge
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The New Integrators Are Significantly More Efficient

This overhead of 
SUNDIALS is negligible

2nd order methods have 
~15x speedup at temporal 
error of 10-2m

The half-explicit Heun’s 
method has similar 
performance to RK2

High order methods give 
orders of magnitude less 
temporal error for fixed 
runtime 
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§ Despite appearing purely advective, the ice 
thickness evolves like an advection-diffusion 
equation due to the advection velocity depending 
on thickness

§ Spatial error often dominates temporal error, 
even when using the native, first order method

§ In this regime, we achieve the best efficiency by 
taking Δ𝑡 near the CFL limit

§ The following metric is key

max	stable	Δ𝑡
cost	per	step

≈
extent	of	linear	stability	region

stages

BISICLES is Often Stability-Limited
𝜕𝐻
𝜕𝑡

=
𝜕
𝜕𝑥

𝑣!𝐻 +
𝜕
𝜕𝑦

𝑣"𝐻

𝛽#𝑣 − ∇ ⋅ 𝐻𝜇 𝑣 	∇𝑣 = −𝜌$𝑔𝐻	∇ ⋅ 𝑠
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High Order is Not Always Advantageous for Linear Stability
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§ We tested a first order method in 3 stages 
with a large stability region

§ For the twisty stream problem, we can 
take a time step roughly 5x bigger

§ The minimum time to a stable solution is 
reduced by about 35% for the twisty 
stream problem

We Can Optimize The Stability with Additional Stages
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§ New Runge-Kutta integrators from SUNDIALS facilitate faster and more accurate 
modeling of ice sheets

§ Embedded error estimation offers a simpler and robust alternative to CFL based time 
step selection

§ Chombo N_Vector is now available in Chombo 3.2 patch 8

§ Future and ongoing work
— Testing multirate methods
— Exploring other stabilized methods
— Parallel-in-time leveraging SUNDIALS’ wrappers for XBraid
— Exploring more-complex (realistic) ice sheet configurations (grounding-line retreat, realistic 

Greenland and Antarctic geometries, etc).

Conclusions
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