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Introduction

§ Systems of ordinary differential equations (ODEs)

𝑦! = 𝑓 𝑦 , 𝑦 𝑡" = 𝑦"

are ubiquitous in modeling time-dependent phenomena.

§ High-order time discretizations complement high-order spatial discretizations.

§ Parallelism of function evaluations at method level
— Challenging
— Restrictive
— Limited adoption and success
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Systematically constructing integrators of order p

Method Extrapolated Euler Deferred Correction Euler

Backward Differentiation 
Formula & Adams 

Bashforth

Stages 𝑝! − 𝑝 + 2
2

𝑝(𝑝 − 1) 1

Minimum Parallel 
Processes for Maximum 

Speedup1

𝑝
2

𝑝 − 1 1

Steps 1 1 𝑝

1. Ketcheson, David, and Umair bin Waheed. "A comparison of high-order explicit Runge–Kutta, extrapolation, and deferred correction methods in serial and 
parallel." Communications in Applied Mathematics and Computational Science 9.2 (2014): 175-200.
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Linear stability can degrade as order increases

Stability regions for extrapolated 
backward Euler orders 1 to 8

Stability regions for BDF methods 
orders 1 to 6
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§ General linear methods (GLMs) are a broad class of integrators:

§ They contain 𝑠 internal stages and 𝑟 external stages.

§ Internal stages can have a high order of accuracy, and external stages provide 
historical information

General linear methods
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§ If 𝐴 = 𝜆𝐼, then the stages of a GLM are independent1.

§ All 𝑠 stages can be evaluated in parallel.

§ Explicit methods have 𝜆 = 0.

§ Implicit methods have 𝜆 > 0.

Parallelism for general linear methods

𝑌" = ℎ𝜆𝑓 𝑌# +-
#$%

(

𝑢",#𝑦#
[*+%]

𝑦"
[*] = ℎ-

#$%

&

𝑏",#𝑓 𝑌# +-
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B 𝑉

1. Jackiewicz, Zdzislaw. General linear methods for ordinary differential equations. John Wiley & Sons, 2009.
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Parallel ensemble idea

𝑡*+% 𝑡* 𝑡*+%

Euler Steps in Parallel

𝑦%
*+% ≈ 𝑦 𝑡*+% + 𝑐%ℎ 𝑦!

*+% 𝑦2
*+%

Linear combination of
first-order Euler steps

𝑦%
* ≈ 𝑦 𝑡* + 𝑐%ℎ 𝑦!

* 𝑦2
*
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§ This idea can be cast as a GLM with tableau

where

§ By construction, 𝑝 = 𝑞 = 𝑟 = 𝑠

Parallel ensemble general linear methods

𝑐 𝜆𝐼&×& 𝐼&×&
𝐶𝐹 𝐼&×& − 𝜆𝐾 𝐶+% 𝐼&×&

𝐶 = 𝟙, 𝑐,
𝑐!

2 , … ,
𝑐&+%

𝑠 − 1 !
𝐹 =

1
1
2

1
6

⋯
1
𝑛!

1
1
2

⋯
1

𝑛 − 1 !
⋱ ⋱ ⋮

1
1
2
1

𝐾 =

0 1
0 1

⋱ ⋱
0 1

0
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Third order parallel ensemble methods

0
1/2
1

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

1/6 2/3 1/6
1/6 −1/3 7/6
7/6 −10/3 19/6

1 0 0
0 1 0
0 0 1

0
1/2
1

1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

7/6 2/3 −5/6
−5/6 −11/3 −11/6
−11/6 −14/3 −11/6

1 0 0
0 1 0
0 0 1

Explicit Implicit
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§ When a generic GLM is applied to the Dahlquist test problem

we get the linear stability matrix

§ For stability at 𝑧 = ℎ𝜉, 𝑀(𝑧) must be power bounded.

§ The 𝐴, 𝐵, 𝑈, and 𝑉 coefficients of parallel ensemble methods simultaneously 
triangularize to reveal the eigenvalues of 𝑀(𝑧):

§ This is stability of a one stage Runge-Kutta method!

Linear stability of parallel ensemble methods

𝑦4 = 𝜉𝑦

𝑀 𝑧 = 𝑉 + 𝐵 𝐼 − 𝑧𝐴 +%𝑈

eigs𝑀(𝑧) =
1 + 𝑧 − 𝜆𝑧
1 − 𝜆𝑧

, … ,
1 + 𝑧 + 𝜆𝑧
1 − 𝜆𝑧
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Third order parallel ensemble methods
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Systematically constructing integrators of order p

Method Extrapolated Euler
Deferred Correction 

Euler
Parallel Ensemble 

Euler

Backward 
Differentiation 

Formula & Adams 
Bashforth

Stages 𝑝! − 𝑝 + 2
2

𝑝(𝑝 − 1) 𝑝 1

Minimum Parallel 
Processes for 

Maximum Speedup1

𝑝
2

𝑝 − 1 𝑝 1

Steps 1 1 𝑝 𝑝

1. Ketcheson, David, and Umair bin Waheed. "A comparison of high-order explicit Runge–Kutta, extrapolation, and deferred correction methods in serial and 
parallel." Communications in Applied Mathematics and Computational Science 9.2 (2014): 175-200.
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Implicit-explicit general linear methods

§ Consider the partitioned ODE

with 𝑓 nonstiff and 𝑔 stiff.

§ Implicit-explicit (IMEX) GLMs were proposed1 to treat 𝑓 explicitly and 𝑔 implicitly:

𝑦4 = 𝒇 𝒚 + 𝒈(𝒚)

𝑌" = ℎ-
#$%

"+%

𝑎",#𝒇 𝒀𝒋 + ℎ-
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𝑢",#𝑦#
[*+%]

𝑦"
[*] = ℎ-

#$%

&
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#$%

&

a𝑏",#𝒈 𝒀𝒋 +-
#$%

(

𝑣",#𝑦#
[*+%]

𝑐 𝐴 b𝐴 𝑈
𝐵 a𝐵 𝑉

1. Zhang, Hong, Adrian Sandu, and Sebastien Blaise. "Partitioned and implicit–explicit general linear methods for ordinary differential equations." Journal of 
Scientific Computing 61.1 (2014): 119-144.
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Implicit-explicit parallel ensemble methods

§ Idea: combine an explicit and implicit parallel ensemble method
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0
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Implicit-explicit parallel ensemble methods

§ Maintains properties of base methods
— Arbitrary order
— Stage Parallelism
— Stability independent of order

§ The linear stability region matches that of IMEX Euler!

𝑦*0% = 𝑦* + ℎ𝒇 𝒚𝒏 + ℎ𝒈 𝒚𝒏0𝟏
Apply to

𝑦! = 𝝃𝟏𝒚 + 𝝃𝟐𝒚
𝑅 𝒛𝟏, 𝒛𝟐 =

1 + 𝒛𝟏
1 − 𝒛𝟐
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Other partitioned methods

§ An alternating direction implicit (ADI) method solves

in a decoupled manner.  Consider ADI Euler:

§ ADI GLMs1 based on parallel ensemble methods have same linear stability region as 
ADI Euler.

§ Similar results hold for multirate methods.

𝑦4 = 𝑓% 𝑦 + 𝑓! 𝑦 + 𝑓2 𝑦

𝑌% = 𝑦* + ℎ𝒇𝟏 𝒀𝟏 + ℎ𝑓! 𝑦* + ℎ𝑓2 𝑦*
𝑌! = 𝑦* + ℎ𝑓% 𝑌% + ℎ𝒇𝟐 𝒀𝟐 + ℎ𝑓2 𝑦*
𝑌2 = 𝑦* + ℎ𝑓% 𝑌% + ℎ𝑓! 𝑌! + ℎ𝒇𝟑 𝒀𝟑

𝑦*0% = 𝑌2

1. Sarshar, Arash, Steven Roberts, and Adrian Sandu. "Alternating directions implicit integration in a general linear method framework." Journal of Computational and Applied 
Mathematics 387 (2021): 112619.
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Numerical experiment: Allen-Cahn

§ We consider a 2D Allen-Cahn reaction-diffusion PDE:

§ FEniCS1 was used for a continuous finite element spatial discretization.

§ MPI was used for stage parallelism.

§ The fourth and fifth order serial methods we tested against are IMEX-DIMSIM4 and 
IMEX-DIMSIM5 from Zhang, Sandu, and Blaise2, as well as ARK4(3)7L[2]SA1 and 
ARK5(4)8L[2]SA2 from Kennedy and Carpenter3 .

𝜕𝑢
𝜕𝑡 = 𝛼∇!𝑢 + 𝛽 𝑢 − 𝑢2 + 𝑠 𝑡, 𝑥, 𝑦

1. Alnæs, Martin, et al. "The FEniCS project version 1.5." Archive of Numerical Software 3.100 (2015).
2. Zhang, Hong, Adrian Sandu, and Sebastien Blaise. "High order implicit-explicit general linear methods with optimized stability regions." SIAM Journal on 

Scientific Computing 38.3 (2016): A1430-A1453.
3. Kennedy, Christopher A., and Mark H. Carpenter. "Higher-order additive Runge–Kutta schemes for ordinary differential equations." Applied numerical 

mathematics 136 (2019): 183-205.
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Allen-Cahn solution
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Work precision plots for 4th and 5th order IMEX methods
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Conclusions

§ Parallel ensemble methods provide a systematic approach to derive high-order GLMs.

§ A unique simultaneous triangularization property provides a stability region that is 
independent of order.

§ Potentially large coefficients can lead to cancelation error. 

§ Parallel ensemble methods are perfect building blocks for partitioned methods.
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