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§ A Runge–Kutta method solves the ordinary differential equation (ODE)

𝑦! 𝑡 = 𝑓 𝑦 𝑡 , 𝑦 𝑡" = 𝑦"

with the numerical procedure

This Talk will Focus on Runge–Kutta Methods

𝑌# = 𝑦$ + Δ𝑡)
%&'

(

𝑎#,%𝑓 𝑌% , 𝑖 = 1,… , 𝑠,

𝑦$*' = 𝑦$ + Δ𝑡)
%&'

(

𝑏%𝑓 𝑌%

𝑐 𝐴
𝑏!
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§ Consider the following PDE1 on 𝑡, 𝑥 ∈ 0,1 :

§ The exact solution 𝑢 𝑡, 𝑥 = !"#
!"$

is linear in space

§ This finite difference discretization contributes no spatial error
— Any numerical error will be entirely from the time discretization

Motivating Example: Let’s Solve a Simple PDE

Semidiscretize 𝑦! =

−
1
Δ𝑥
1
Δ𝑥 −

1
Δ𝑥
⋱ ⋱

1
Δ𝑥 −

1
Δ𝑥

𝑦 +

𝑡 − 𝑥"
1 + 𝑡 # +

1
Δ𝑥 1 + 𝑡

𝑡 − 𝑥#
1 + 𝑡 #

⋮
𝑡 − 𝑥$
1 + 𝑡 #

1. Sanz-Serna, Jesús María, Jan G. Verwer, and W. H. Hundsdorfer. "Convergence and order reduction of Runge-Kutta schemes applied to evolutionary problems in partial differential equations." Numerische 
Mathematik 50.4 (1986): 405-418.

𝑢! = −𝑢" +
𝑡 − 𝑥
1 + 𝑡 # ,

𝑢 𝑡, 0 =
1

1 + 𝑡
,

𝑢 0, 𝑥 = 1 + 𝑥



7
LLNL-PRES-857851

We Solve the Advection PDE with Two Fourth Order DIRK 
Methods from SUNDIALS
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We See Asymptotic Convergence on a 16 Point Grid
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We See Order Reduction on a 2048 Point Grid
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The Dominant Temporal Error is Located Near Boundary Cells
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§ Recall the semidiscretized PDE:

§ The Lipschitz constant of the right-hand side function is !/#
— As we refine in space, the problem becomes stiffer

§ Classical convergence assumes a moderate Lipschitz constant and “sufficiently small” Δ𝑡

§ We often do not see expected convergence order until Δ𝑡 ≤ 𝐶 Δx
— This is a CFL-like condition present even though the method is implicit

Classical Convergence Requires Unrealistic Assumptions

𝑦! =

−
1
Δ𝑥
1
Δ𝑥

−
1
Δ𝑥
⋱ ⋱

1
Δ𝑥

−
1
Δ𝑥

𝑦 +

𝑡 − 𝑥"
1 + 𝑡 # +

1
Δ𝑥 1 + 𝑡

𝑡 − 𝑥#
1 + 𝑡 #

⋮
𝑡 − 𝑥$
1 + 𝑡 #
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§ A classical expansion of the local truncation error is based on Taylor series

§ Let’s examine a couple error terms

𝑦 𝑡$ − 𝑦$ = ⋯+ Δ𝑡#
1
2
− 𝑏%𝑐 𝑓′ 𝑦& 𝑓(𝑦&) + Δ𝑡'

1
6
− 𝑏%𝐴𝑐 𝑓( 𝑦& #𝑓 𝑦& +⋯

The Error Contains Unbounded Terms

𝒪 Δ𝑥%"

𝑦! = 𝑓 𝑦

𝒪 Δ𝑥%#

Bad interactions between spatial and temporal scales
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§ In 1974, Prothero and Robinson1 proposed perhaps the simplest problem to cause 
order reduction

𝑦2 = 𝜆 𝑦 − 𝜙 𝑡 + 𝜙2 𝑡

§ Practical ways to avoid order reduction are still an area of active research

The Order Reduction Phenomenon is Well-Known

1. Prothero, A., and A. Robinson. "On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations." Mathematics of Computation 28.125 (1974): 145-162.

• Compatible with any Runge–Kutta 
implementation

• Deriving methods which satisfy the order 
conditions may be challenging

• Often require additional stages, and thus, 
are more expensive

Enforce Additional Order Conditions

• Often intrusive to solve implementations
• Often require extra derivative information
• Difficult to generalize
• No additional stages

Modified Boundary Conditions
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§ The ODE for the first grid point of the advection PDE behaves like the Prothero-
Robinson problem

§ More refined approaches explain boundary layers and fractional orders of 
convergence before applying a spatial discretization1,2

The Prothero-Robinson and PDE Problem are Connected

𝑦! =

−
1
Δ𝑥
1
Δ𝑥 −

1
Δ𝑥
⋱ ⋱

1
Δ𝑥 −

1
Δ𝑥

𝑦 +

𝑡 − 𝑥"
1 + 𝑡 # +

1
Δ𝑥 1 + 𝑡

𝑡 − 𝑥#
1 + 𝑡 #

⋮
𝑡 − 𝑥$
1 + 𝑡 # 𝑦! = 	 𝜆	 𝑦	 − 	𝜙 𝑡 	+	 𝜙! 𝑡 	

𝑦"! = −
1
Δ𝑥 𝑦" −

1
1 + 𝑡 +

𝑡 − 𝑥"
1 + 𝑡 #

≈

1. Rosales, Rodolfo Ruben, et al. "Spatial manifestations of order reduction in Runge–Kutta methods for initial boundary value problems." arXiv preprint arXiv:1712.00897 (2017).
2. Ostermann, Alexander, and Michel Roche. "Runge–Kutta methods for partial differential equations and fractional orders of convergence." Mathematics of Computation 59.200 (1992): 403-420.
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§ Many authors have identified the following order conditions to remove order 
reduction on linear problems:

0 = 𝑏% 𝐼 − 𝑧𝐴 )$ 𝐴𝑐*)$ −
𝑐*

𝑘
, ∀𝑧 ∈ ℂ), 𝑘 = 1,… , 𝑞

§ To remove the auxiliary variable 𝑧, we can take a Neumann series expansion

0 = 𝑏%𝐴+ 𝐴𝑐*)$ −
𝑐*

𝑘
, 𝑖 = 0,… , 𝑠 − 1, 𝑘 = 1,… , 𝑞

§ The largest 𝑞 for which this holds is the weak stage order1 (WSO) or pseudostage
order2

Weak Stage Order Conditions Guarantee High Order 
Convergence

1. Ketcheson, David I., et al. "DIRK schemes with high weak stage order." Spectral and High Order Methods for Partial Differential Equations (2020): 453.
2. Skvortsov, LM. "How to avoid accuracy and order reduction in Runge–Kutta methods as applied to stiff problems." Computational Mathematics and Mathematical Physics 57 (2017): 1124-1139.
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Biswas, Abhijit, et al. "Explicit Runge Kutta 
Methods that Alleviate Order Reduction." arXiv 
preprint arXiv:2310.02817 (2023).
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§ Stiffness is a primary component of order reduction

§ Nevertheless explicit methods are still susceptible 
to order reduction

§ When solving a hyperbolic PDE, Δ𝑥 and Δ𝑡 often 
scale proportionally
— Maintains a constant CFL number
— Allows time and spatial errors to scale together
— The stiffness grows as the time step shrinks so we are not 

in the classical asymptotic regime!

Order Reduction Occurs for Explicit Runge–Kutta Schemes Too
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§ Are weak stage order conditions compatible with classical order conditions?

§ Are there order barriers?

How Do We Construct Explicit Runge–Kutta Methods with High 
Weak Stage Order?

0 = 𝑏&𝐴' 𝐴𝑐(%" −
𝑐(

𝑘 , 𝑖 = 0, … , 𝑠 − 1, 𝑘 = 1,… , 𝑞
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Weak Stage Order Necessitates Additional Stages

For	an	explicit	Runge–Kutta	method

𝑝 + 𝑞 ≤ 𝑠 + 1

𝑝: classical order
𝑞: weak stage order
𝑠: # of stages

Theorem 2 3 4 5

1 2 3 4 6

2 3 4 5 6

3 4 5 6 7

4 5 6 7 8

5 6 7 8 9

Classical Order 𝑝

Weak 
Stage 

Order 𝑞

We found concrete methods which attain the 
theoretical bound sharply up to order 5 (except 
𝑝 = 5, 𝑞 = 1 which is a classical order barrier)

Minimum # of Stage Required
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§ Extrapolation and deferred correction are common techniques
— Unfortunately, WSO generally does not increase

§ A special case of deferred correction is parallel iteration

§ This amounts to applying a fixed point iteration to the basic scheme 4𝐴, 6𝑏, �̃�

Can we Systematically Build High Order Methods?

𝑘'
) = 0

𝑘'
(ℓ) = 𝑓 𝑦- + Δ𝑡B

./"

0

C𝑎',.𝑘.
ℓ%" , ℓ = 1, … , 𝜎

𝑦-2" = 𝑦- + Δ𝑡B
./"

0

𝑏'𝑘'
3

1. van der Houwen, Piet J., and Ben P. Sommeijer. "Iterated Runge–Kutta methods on parallel computers." SIAM Journal on Scientific and Statistical Computing 12.5 (1991): 1000-1028.
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§ Parallel iteration does not increase WSO unless we carefully chose the basic scheme

§ The basic method is fully implicitly, but all eigenvalues of 4𝐴 are zero

§ We achieve order 𝑝 and WSO 𝑝 after 𝑝 parallel iterations
— The total number of stages is 𝑝#
— Expensive if implemented serially, but competitive if parallelism is exploited

There Are Explicit Runge–Kutta Methods of Any Order Devoid of 
Order Reduction for Linear ODEs
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The Parallel Iterated Runge–Kutta Methods Attain High Order on 
the Advection PDE
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§ Nonlinearity often worsens order reduction

§ The typical remedy is high stage order

𝐶 𝑞 : 𝐴𝑐GH! =
𝑐G

𝑘
, 𝑘 = 1,… , 𝑞,

𝐵 𝑝 : 𝑏I𝑐GH! =
1
𝑘
, 𝑘 = 1,… , 𝑝

§ This is very restrictive!
— Explicit methods have max stage order of 1
— Diagonally implicit methods have max stage order of 2

§ Within the Runge–Kutta family, fully implicit schemes are seemingly the only ones that 
can achieve high orders outside the classical regime.

Nonlinear Problems Require Stringent Order Conditions
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We Consider Semilinear Problems

§ In nonlinear problems, stiffness often arises from linear terms

§ Let’s consider semilinear problems

𝑦2 = 𝐽𝑦 + 𝑔(𝑦)

§ Examples include
— Patten-forming diffusion reaction problems
— Schrödinger equations
— Air pollution transport models

Stiff
Re 𝑦, 𝐽𝑦 ≤ 0

Nonstiff
𝑔 𝑦 − 𝑔(𝑧) ≤ 𝐿 𝑦 − 𝑧

Nonpositive logarithmic 
norm ensures the 
eigenvalues of 𝐽 reside in 
the left half-plane
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§ Do we need the restrictive condition of high 
stage order for semilinear problems?
— The literature suggests yes

§ Are there sharper order conditions for 
semilinear problems?

§ Can we find methods devoid of order 
reduction with practical structures?
— We will focus on diagonally implicit methods

The Situation for Semilinear Problems is Unclear

Burrage, Kevin, W. H. Hundsdorfer, and Jan G. Verwer. "A study of B-
convergence of Runge–Kutta methods." Computing 36.1-2 (1986): 17-34.

Calvo, M., S. González-Pinto, and J. I. Montijano. "Runge–Kutta methods for the 
numerical solution of stiff semilinear systems." BIT Numerical Mathematics 40 
(2000): 611-639.

𝐶 𝑞 : 	 𝐴𝑐!"# =
𝑐!

𝑘 , 𝑘 = 1,… , 𝑞,

𝐵 𝑝 : 𝑏$𝑐!"# =
1
𝑘
, 	 𝑘 = 1,… , 𝑝
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§ Exponential Integrators
— Hochbruck, Marlis, and Alexander Ostermann. "Explicit exponential Runge--Kutta methods for semilinear parabolic 

problems." SINUM 43.3 (2005): 1069-1090.
— Luan, Vu Thai, and Alexander Ostermann. "Exponential B-series: The stiff case." SINUM 51.6 (2013): 3431-3445.
— Hochbruck, Marlis, Jan Leibold, and Alexander Ostermann. "On the convergence of Lawson methods for semilinear

stiff problems." Numerische Mathematik 145 (2020): 553-580.

§ Splitting Methods
— Hansen, Eskil, and Alexander Ostermann. "High-order splitting schemes for semilinear evolution equations." BIT 

Numerical Mathematics 56 (2016): 1303-1316.
— Einkemmer, Lukas, and Alexander Ostermann. "Overcoming order reduction in diffusion-reaction splitting. Part 1: 

Dirichlet boundary conditions." SISC 37.3 (2015): A1577-A1592.
— Einkemmer, Lukas, and Alexander Ostermann. "Overcoming order reduction in diffusion-reaction splitting. Part 2: 

Oblique boundary conditions." SISC 38.6 (2016): A3741-A3757.

§ Linear Multistep Methods
— Wanner, Gerhard, and Ernst Hairer. Solving ordinary differential equations II. Vol. 375. New York: Springer Berlin 

Heidelberg, 1996.

§ Rosenbrock
— Lubich, Ch, and Alexander Ostermann. "Linearly implicit time discretization of non-linear parabolic equations." IMA 

Journal of Numerical Analysis 15.4 (1995): 555-583.

Progress has been Made Outside of Runge–Kutta Methods
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Our Semilinear Analysis Extends a Lesser-Known Classical 
Analysis

§ Rooted trees and B-series1 are the standard tools for analyzing the local error of a 
Runge–Kutta scheme

§ Albrecht2 proposed alternative order conditions based on recursive orthogonality 
conditions
— These conditions are in 1-to-1 correspondence with rooted trees too
— We adapt this analysis approach for stiff, semilinear ODEs

1. Butcher, J.C. (2021). B-series and Algebraic Analysis. In: B-Series. Springer Series in Computational Mathematics, vol 55. Springer, Cham.
2. Albrecht, Peter. "The Runge–Kutta theory in a nutshell." SIAM Journal on Numerical Analysis 33.5 (1996): 1712-1735.

AlbrechtButcher 0= 𝑏I𝐶S T+

S − 𝐴𝑐0= 𝑏I𝐶S𝐴𝑐

Example Condition of Order 5
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§ The local truncation error satisfies 𝑦 𝑥! − 𝑦! = ∑$∈IΨ 𝑡 , where 𝑇 is the set of 
rooted trees and

§ The stiff term 𝑍 = Δ𝑡 𝐽 is confined to bounded terms

§ All differential are bounded
— 𝐺 ℓ,* 𝑥 = a.ℓ

."ℓ
𝑔 * 𝑦(𝑥)

"/"0

§ When 𝑍 = 0, we recover Albrecht’s classical, nonstiff order conditions

Our Error Expansion Uses Bounded Terms I
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§ A classical expansion of the local truncation error looks like

𝑦 𝑥$ − 𝑦$ = ⋯+ Δ𝑡#
1
2
− 𝑏%𝑐 𝐽 + 𝑔( 𝑦& 𝑦&( + Δ𝑡'

1
6
− 𝑏%𝐴𝑐 𝐽 + 𝑔( 𝑦&

#
𝑦&( +⋯

§ Our new semilinear expansion looks like

𝑦 𝑥$ − 𝑦$

= ⋯+ Δ𝑡#
1
2 − 𝑏

%𝑐 + 𝑧𝑏% 𝐼 − 𝑧𝐴 )$ 𝑐#

2 − 𝐴𝑐 𝑦&(( + Δ𝑡'𝑏% 𝐼 − 𝑧𝐴 )# 𝑐#

2 − 𝐴𝑐 𝑔( 𝑦& 𝑦&(( +⋯

where 𝑧 = Δ𝑡 𝐽 (scalar here for simplicity).

Our Error Expansion Uses Bounded Terms II

Unbounded 
Terms
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§ From our new error expansion we 
can extract order conditions

§ Like classical order conditions, 
there is 1-to-1 correspondence 
with rooted trees

§ The semilinear order conditions 
are sharper than stage order 
conditions

§ “Bushy trees” (trees with height 2) 
give WSO conditions

We Found that Sharper Order Conditions Do Exists for Stiff 
Semilinear Problems
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The Conditions for 𝒕 = Reveals Redundancies and Patterns

0 = 𝑏& 𝐼 − 𝑧"𝐴 %" 𝐼 − 𝑧#𝐴 %" 𝑐4

6 −
𝐴𝑐#

2 , ∀𝑧", 𝑧# ∈ ℂ%

0 = 𝑏&𝐴'
𝑐4

6
−
𝐴𝑐#

2
, 𝑖 = 0,1,2…

Semilinear order condition 
associated with with 𝑡 =
(One order lower)

Classical Albrecht order 
conditions associated with 
with 𝑡 ∈
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We Need to Define a Special Vertex Type

A vertex of a tree is called a semi-lone-parent 
if it has a single child which is not a leaf.

A tree without semi-lone-parents is semi-
lone-child-avoiding.

Definition1

1. https://oeis.org/A331934

semi-lone-child-avoiding

⃪   semi-lone parent vertex
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Semilinear Conditions for Trees with a Semi-Lone-Parent are 
Redundant

If a tree has a semi-lone-parent vertex, the 
corresponding semilinear order condition is 
implied by the tree with that vertex removed.

Theorem

We only need to consider the set of semi-lone-child-avoiding trees

0 = 𝑏% 𝐼 − 𝑧"𝐴 &" 𝐼 − 𝑧#𝐴 &" 𝑐'

6
−
𝐴𝑐#

2
0 = 𝑏% 𝐼 − 𝑧"𝐴 &" 𝑐'

6
−
𝐴𝑐#

2
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§ Classical order 𝑝 conditions map to 
trees with 𝑝 vertices

§ Semilinear order conditions map to 
trees with with 𝑝 vertices that are 
not a semi-lone-parent
— The subsets are infinite!

§ Semilinear order conditions can be 
viewed as a regrouping of classical 
order conditions in Albrecht’s form

Let’s Express Semilinear Order Conditions in Terms of Classical 
Order Conditions

1

2

3

4

5
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§ Desired properties
— Order >2
— (Singly) diagonally implicit
— L-stable

§ The semilinear conditions coincide with WSO up to order 3
— We can leverage existing DIRK methods designed for linear problems1,2
— Explains better-than-expected convergence in tests

§ Order conditions are challenging to solve
— The number or order conditions increases with the order and the number of stages
— We use both symbolic and constrained optimization techniques

Can we Derive Diagonally Implicit Runge–Kutta (DIRK) Methods 
with the Semilinear Order Conditions?

1. Ketcheson, David I., et al. "DIRK schemes with high weak stage order." Spectral and High Order Methods for Partial Differential Equations (2020): 453.
2. Biswas, Abhijit, et al. "Design of DIRK schemes with high weak stage order." Communications in Applied Mathematics and Computational Science 18.1 (2023): 1-28.
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SDIRK3SL is a New 3rd Order Method for Stiff, Semilinear ODEs

§ We minimize the principal error with the order condition constraints

1
𝑘 = 𝑏&𝑐(%", 𝑘 = 1,2,3

0 = 𝑏&𝐴'
𝑐.

𝑗 − 𝐴𝑐
.%" , 𝑖 = 0, … , 𝑠 − 1, 𝑗 = 2,3

§ While methods exist with 5 stages, an additional stage significantly improves accuracy
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§ Now there are 74 conditions for a 4th order method in 7 stages!

1
𝑘 = 𝑏&𝑐(%", 𝑘 = 1,2,3,4

0 = 𝑏&𝐴'
𝑐.

𝑗 − 𝐴𝑐
.%" , 𝑖 = 0, … , 6, 𝑗 = 2,3,4

0 = 𝑏&𝐴'𝐶𝐴.
𝑐#

2 − 𝐴𝑐 , 𝑖, 𝑗 = 0, … , 6

DIRK4SL is a New 4th Order Method for Stiff, Semilinear ODEs
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§ Consider the 2D Allen-Cahn reaction-diffusion PDE

𝜕𝑢
𝜕𝑡

= 𝛼∇S𝑢 + 𝛽 𝑢 − 𝑢_ + 𝑠 𝑡, 𝑥, 𝑦

§ I tested methods of order 3 and 4 to validate the 
semilinear order conditions

Allen-Cahn is a Semilinear PDE Modeling Phase Separation

Method Source Stages Classical Order Semilinear Order

SDIRK3SL New method from this work 6 3 3

SDIRK3M Kennedy, Christopher A., and Mark H. Carpenter. Diagonally implicit Runge–
Kutta methods for ordinary differential equations. A review. 2016. 4 3 1

DIRK4SL New method from this work 7 4 4

SDIRK4M Kennedy, Christopher A., and Mark H. Carpenter. Diagonally implicit Runge–
Kutta methods for ordinary differential equations. A review. 2016. 5 4 1
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The New Method SDIRK3SL Avoids Order Reduction
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SDIRK4SL Also Avoids Order Reduction
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§ Classical order conditions rely on assumptions that often fail to hold for stiff problems

§ The consequence is a reduction in order and efficiency for most Runge–Kutta methods

§ We proposed a new error analysis and order condition theory resilient to stiffness

§ High stage order is not necessary to avoid order reduction on stiff, semilinear ODEs

§ Future work
— Fully nonlinear problems
— Other classes of integrators

Conclusions
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Questions?

To create greater convergence, we need more integration.

—Emmanuel Macron


