The Order of Runge—Kutta Methods in Theory and Practice
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This Talk will Focus on Runge—Kutta Methods

= A Runge—Kutta method solves the ordinary differential equation (ODE)

y' () = f(y(®), y(to) = yo

with the numerical procedure

S

Yl.:yn+At2ai’jf(Yj), i=1,..,s, cl A

J=1

- T
Yn+1 = Yn T+ AtE b]f(lﬂ) b
=
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Motivating Example: Let’s Solve a Simple PDE

= Consider the following PDE* on t,x € [0,1]:

t—x

e = Tt e
1
t!O — T
w(t,0) =
u(0,x) =1+x

= The exact solution u(t, x) =

Semidiscretize

1+x .

—— is linear in space
1+t

= This finite difference discretization contributes no spatial error
— Any numerical error will be entirely from the time discretization

Tt —Xxq 1
A+02 " axd+0D
t — x,

(14 t)?
t—xy
I (1+1t)?

1. Sanz-Serna, Jesus Maria, Jan G. Verwer, and W. H. Hundsdorfer. "Convergence and order reduction of Runge-Kutta schemes applied to evolutionary problems in partial differential equations." Numerische

Mathematik 50.4 (1986): 405-418.
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We Solve the Advection PDE with Two Fourth Order DIRK
Methods from SUNDIALS

i| % 6 o0 0 0 0 0 0 0 0 0
il +# 0 o0 o0 0.871733043 |  0.4358665215 0.4358665215 0 0 0
T N 0.468238744853136 | 0.140737774731968 —0.108365551378832  0.4358665215 0 0
1l _1 15 1 g 1| 0.102399400616089 —0.376878452267324 0.838612530151233  0.4358665215 0
1|3 _# 1 s o1 1| 0.157024897860995 0.117330441357768  0.61667803039168 —0.326899891110444 (0.4358665215
5 & 1 s 1 4 | 0.157024897860995  0.117330441357768  0.61667803039168 —0.326899891110444 0.4358665215
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We See Asymptotic Convergence on a 16 Point Grid
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We See Order Reduction on a 2048 Point Grid
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The Dominant Temporal Error is Located Near Boundary Cells
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Classical Convergence Requires Unrealistic Assumptions

= Recall the semidiscretized PDE:
1 1 Tt — x4 1

_ +
Ax 1+t Ax(1+1¢)
1 1 t - xz
y'=| Ax  Ax y + (1+t)?
1 1 t—xy
Ax Ax (1+1t)?

= The Lipschitz constant of the right-hand side function is A—lx

— As we refine in space, the problem becomes stiffer

= Classical convergence assumes a moderate Lipschitz constant and “sufficiently small” At

= We often do not see expected convergence order until At < C Ax
— This is a CFL-like condition present even though the method is implicit
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The Error Contains Unbounded Terms Y =f)

= A classical expansion of the local truncation error is based on Taylor series
= Let’s examine a couple error terms

2 1 T / 3 1

y(t) = y1 =+ B¢ (5 = BTe) () () + A3 (2

. 5~ bTAe) [0 (0) + -

O(A;c‘l) O(A;c‘z)

Bad interactions between spatial and temporal scales

.',‘;0’:';0’ ‘a1
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The Order Reduction Phenomenon is Well-Known

= |n 1974, Prothero and Robinson?! proposed perhaps the simplest problem to cause
order reduction

y' =2y — @) + ¢’ (®)

= Practical ways to avoid order reduction are still an area of active research

Modified Boundary Conditions Enforce Additional Order Conditions
e Often intrusive to solve implementations e Compatible with any Runge—Kutta
e Often require extra derivative information implementation
e Difficult to generalize e Deriving methods which satisfy the order
* No additional stages conditions may be challenging
e Often require additional stages, and thus,
are more expensive

1. Prothero, A., and A. Robinson. "On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations." Mathematics of Computation 28.125 (1974): 145-162.
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The Prothero-Robinson and PDE Problem are Connected

= The ODE for the first grid point of the advection PDE behaves like the Prothero-
Robinson problem

_ 1 ] _t_xl 1 7] 1 1 t—xl
T A + ,:—— _——
Ax Gref Taan| b v Ax(yl 1+t)+(1+t)2
1 1 t_xz
y’: Ax Ax y + (1-|—t)2 R
- - I — /1 _ t + /t
Ax Ax i (1 + t)2 | y (y — o) ¢'(¢)

= More refined approaches explain boundary layers and fractional orders of
convergence before applying a spatial discretization'-2

1. Rosales, Rodolfo Ruben, et al. "Spatial manifestations of order reduction in Runge—Kutta methods for initial boundary value problems." arXiv preprint arXiv:1712.00897 (2017).
2. Ostermann, Alexander, and Michel Roche. "Runge—Kutta methods for partial differential equations and fractional orders of convergence." Mathematics of Computation 59.200 (1992): 403-420.
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Weak Stage Order Conditions Guarantee High Order
Convergence

= Many authors have identified the following order conditions to remove order
reduction on linear problems:

k

C
0=hbT(—-zA)1 <Ack—1 - ?>, VZEC ,k=1,..,q

= To remove the auxiliary variable z, we can take a Neumann series expansion

k
. c
0=bTA (Ack_1 ——), (=0,...s—1, k=1,..,q

k
= The largest g for which this holds is the weak stage order* (WSO) or pseudostage
order?

1. Ketcheson, David I., et al. "DIRK schemes with high weak stage order." Spectral and High Order Methods for Partial Differential Equations (2020): 453.
2. Skvortsov, LM. "How to avoid accuracy and order reduction in Runge—Kutta methods as applied to stiff problems." Computational Mathematics and Mathematical Physics 57 (2017): 1124-1139.
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Biswas, Abhijit, et al. "Explicit Runge Kutta
Methods that Alleviate Order Reduction." arXiv
preprint arXiv:2310.02817 (2023).
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Order Reduction Occurs for Explicit Runge—Kutta Schemes Too

Classical RK4 on Advection PDE

= Stiffness is a primary component of order reduction 104,
= Nevertheless explicit methods are still susceptible L 10

to order reduction 5
= When solving a hyperbolic PDE, Ax and At often |

scale proportionally .
— Maintains a constant CFL number At = Ax

— Allows time and spatial errors to scale together
— The stiffness grows as the time step shrinks so we are not Lol
in the classical asymptotic regime! }
% 24k kR
O
1.5¢
1 L s L PR | s L L PR |
10 1073 1072 10t

At = Ax
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How Do We Construct Explicit Runge—Kutta Methods with High
Weak Stage Order?

= Are weak stage order conditions compatible with classical order conditions?

= Are there order barriers?

k
. C

0=bTA"(Ac*¥1——], i=0,.,5s-1, k=1,..,

Co | Q2.1 -

C3 | az;1 a3 11:b “
5 = bTC,

C Qa a .. a 1 T 2 1 T

s s,1 s,2 s,s—1 3= b ¢, 5= b Ac,
bl b2 T bs—l bs

1 1 1 1
—=bv"'e?, = =bTdiag(c)Ae, — =0bTA, — =bl A%
4 8 12 24
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Weak Stage Order Necessitates Additional Stages

Minimum # of Stage Required

Classical Order p

Theorem

For an explicit Runge-Kutta method

p+q<s+1 Weak

Stage
p: classical order Order g

q: weak stage order
s: # of stages

We found concrete methods which attain the
theoretical bound sharply up to order 5 (except
p = 5,9 = 1 which is a classical order barrier)

RN .
Lawrence Livermore National Laboratory % FCAS( NVYSE 19
S04

LLNL-PRES-857851 RN National Nuclear Security Administration




Can we Systematically Build High Order Methods?

= Extrapolation and deferred correction are common techniques
— Unfortunately, WSO generally does not increase

= A special case of deferred correction is parallel iteration

O =0 0|0
s c|lA O
ki(f) =flwm+ Atz &i,jkj({)_l) , t=1,..,0 cl A clo A 0
J=1 pT - : . .
S . . . ~
yn+1 — yn 4+ AtEblkl(O') C 0 N 0 A NO
= 0 - 0 0 ©bF

= This amounts to applying a fixed point iteration to the basic scheme (/T, b, 6)

1. van der Houwen, Piet J., and Ben P. Sommeijer. "Iterated Runge—Kutta methods on parallel computers." SIAM Journal on Scientific and Statistical Computing 12.5 (1991): 1000-1028.
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There Are Explicit Runge—Kutta Methods of Any Order Devoid of
Order Reduction for Linear ODEs

= Parallel iteration does not increase WSO unless we carefully chose the basic scheme

0
A=VSV! 1 0
b =T gyt S = % 0
UV — = ... | @p
V=[el|c||@] | -

= The basic method is fully implicitly, but all eigenvalues of A are zero

= We achieve order p and WSO p after p parallel iterations

— The total number of stages is p?
— Expensive if implemented serially, but competitive if parallelism is exploited

.gfo’.‘io. ‘a1
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The Parallel Iterated Runge—Kutta Methods Attain High Order on
the Advection PDE

1072

107

Error
Order

—*— Order 2
—*— Order 3
10-14 Order 4
—*k—Order 5

—*—Order 6

At = AX At = AX
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Nonlinear Problems Require Stringent Order Conditions

= Nonlinearity often worsens order reduction
= The typical remedy is high stage order

k

c
C(q): Ack 1= ? k=1,..,q,
Z ok
k

B(p): bTck 1= =1,..,p

= This is very restrictive!
— Explicit methods have max stage order of 1
— Diagonally implicit methods have max stage order of 2

= Within the Runge—Kutta family, fully implicit schemes are seemingly the only ones that
can achieve high orders outside the classical regime.

g . RALHA 4
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We Consider Semilinear Problems

= |[n nonlinear problems, stiffness often arises from linear terms

= Let’s consider semilinear problems

norm ensures the

eigenvalues of ] reside in \ .
the left half-plane Stiff

= Examples include
— Patten-forming diffusion reaction problems

— Schrédinger equations
— Air pollution transport models

Re(y,Jy) <0

Nonpositive logarithmic y’ — ]y + g()’)

Nonstiff
9(y) —g(@)| < Lly — 2|

t = 3000s

Lawrence Livermore National Laboratory
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The Situation for Semilinear Problems is Unclear

B(p): bTck1=

C(@): A t=—, k=1,..,q

= Do we need the restrictive condition of high

stage order for semilinear problems?
— The literature suggests yes

= Are there sharper order conditions for
semilinear problems?

= Can we find methods devoid of order

reduction with practical structures?
— We will focus on diagonally implicit methods

Theorem 3.3: Let o, ff € R be given. Assume the Runge-Kutta method (1.3) is A-stable,
AS-stable and ASI-stable. Then we have for the class of problems (1.5) satisfying (1.6)
the (optimal) B-convergence result

lex|<Ct? (0<t<7)
with order

(@) p=q if]B(g),C(q).

(by p=q+] if Blg+1), C(g)land y is uniformly bounded on C".

Burrage, Kevin, W. H. Hundsdorfer, and Jan G. Verwer. "A study of B-
convergence of Runge—Kutta methods." Computing 36.1-2 (1986): 17-34.

q if}B(g) and C(g) hold,
(3.3) p=< q+1 if{B(g+ 1)and C(g)hold and #(z)

is uniformly bounded on C—,

THEOREM 3.4.

i) All Runge-Kutta methods of the family M, are convergent on the class F,
with order p given by (3.3)-(3.5).

ii) All Runge-Kutta methods of the family Ms are convergent on the class F»
with order p given by (3.3)(3.5).

Calvo, M., S. Gonzdlez-Pinto, and J. I. Montijano. "Runge—Kutta methods for the
numerical solution of stiff semilinear systems." BIT Numerical Mathematics 40
(2000): 611-639.

evie,
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Progress has been Made Outside of Runge—Kutta Methods

Exponential Integrators

— Hochbruck, Marlis, and Alexander Ostermann. "Explicit exponential Runge--Kutta methods for semilinear parabolic
problems." SINUM 43.3 (2005): 1069-1090.

— Luan, Vu Thai, and Alexander Ostermann. "Exponential B-series: The stiff case." SINUM 51.6 (2013): 3431-3445,

— Hochbruck, Marlis, Jan Leibold, and Alexander Ostermann. "On the convergence of Lawson methods for semilinear
stiff problems." Numerische Mathematik 145 (2020): 553-580.

Splitting Methods

— Hansen, Eskil, and Alexander Ostermann. "High-order splitting schemes for semilinear evolution equations." BIT
Numerical Mathematics 56 (2016): 1303-1316.

— Einkemmer, Lukas, and Alexander Ostermann. "Overcoming order reduction in diffusion-reaction splitting. Part 1:
Dirichlet boundary conditions." SISC 37.3 (2015): A1577-A1592.

— Einkemmer, Lukas, and Alexander Ostermann. "Overcoming order reduction in diffusion-reaction splitting. Part 2:
Oblique boundary conditions." SISC 38.6 (2016): A3741-A3757.

Linear Multistep Methods
— Wanner, Gerhard, and Ernst Hairer. Solving ordinary differential equations Il. Vol. 375. New York: Springer Berlin
Heidelberg, 1996.

Rosenbrock
— Lubich, Ch, and Alexander Ostermann. "Linearly implicit time discretization of non-linear parabolic equations.” IMA
Journal of Numerical Analysis 15.4 (1995): 555-583.

. 3
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Our Semilinear Analysis Extends a Lesser-Known Classical
Analysis

= Rooted trees and B-series! are the standard tools for analyzing the local error of a
Runge—Kutta scheme

= Albrecht? proposed alternative order conditions based on recursive orthogonality

conditions
— These conditions are in 1-to-1 correspondence with rooted trees too
— We adapt this analysis approach for stiff, semilinear ODEs

0= bTCZAC Butcher Albrecht 0= bTC'Z (C—ZZ — Ac)

Example Condition of Order 5

1. Butcher, J.C. (2021). B-series and Algebraic Analysis. In: B-Series. Springer Series in Computational Mathematics, vol 55. Springer, Cham.
2. Albrecht, Peter. "The Runge—Kutta theory in a nutshell." SIAM Journal on Numerical Analysis 33.5 (1996): 1712-1735.
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Our Error Expansion Uses Bounded Terms |

= The local truncation error satisfies y(x1) — y1 = Yirer P(t), where T is the set of
rooted trees and

U(t) = <( [—AeZ) ( il é—;l)l') " (20))) t=[r],
(O[T - A2 Z)"H(ACH) @ DGR (2o )(U(t1), ..., U(tr)), t

(& = 5y ) 9 (o) + (67 @ 2)¥ ), = 7,
T @ (I — A Z) Y CL @ DGR (wo)(W(ty),..., U(t)), t=[r"tr.. tx],k>1.

= The stiff term Z = At J is confined to bounded terms

= All differential are bounded
— 6ERO) = L g®(y)]

X=X

= When Z = 0, we recover Albrecht’s classical, nonstiff order conditions

. 3
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Our Error Expansion Uses Bounded Terms I

= A classical expansion of the local truncation error looks like

1 1
y(x1) —y1 =+ At? (_ - bTC) U+ 9" Go))yo + At® (E - bTAc) U+ g'()’o))zy(') + -

2
\ Unbounded /

Terms
= Our new semilinear expansion looks like
y(x1) — 1
2 1 T T -1 Cz n 31.T -2 Cz / 7
= -+ At E_b c+zb"' (I — zA) 7—Ac yo + At°b" (I — zA) 7—Ac 9 e)yy + -

where z = At ] (scalar here for simplicity).

Wevie, ,
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We Found that Sharper Order Conditions Do Exists for Stiff

Semilinear Problems

* From our new error expansion we

i Standard
can extract Order Condltlons Label | Treet | Form of £ | Order Condition
la| e [79] 0=1-b"1
= Like classical order conditions, 2a | o 7l |05 —bTc+ zb" (I — 2 4)7!
there is 1-to-1 correspondence | ¥ [?] . 3
with rooted trees 3b :‘ (17]] = T (I — 2. A) (I — 2A) " (5 - Ac)
4a (:7 [73] 0+ bTGCS + 20T (I — 20 A)~? (5—4 - ATCq)
= The semilinear order conditions ‘} 1 1 »
4b T (T 0=>0b"(1 —2A)"1C(I — 2A)7 (£ — Ac
are sharper than stage order ] =2 A)700 = 24)7 (5 — 4c)
conditions 4c y () | 0=b"(I -2 4) (I - 24) (5 - 45°)
= “Bushy trees” (trees with height 2) 4d 5 7] ] 0=b"(I =2 A) AL = 2A) (I = 24) 7 (5 — Ac)
give WSO conditions
@ Lawrence Livermore National Laboratory ‘:’:. CASC NYSE



The Conditions for t =Y Reveals Redundancies and Patterns

¢ Ac?
0 - bT(I - Z]_A)_l(] - ZzA)_l <__ _>, VZl,ZZ € C_

A

(c3  Ac?
0= bTAl <Z— T) ) [ = 0,1,2
Semilinear order condition Classical Albrecht order
associated with with t =.\./. conditions associated with

(One order lower) witht € .\./. Y \{ \{

evie, X
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We Need to Define a Special Vertex Type

Definition?

A vertex of a tree is called a semi-lone-parent — semi-lone parent vertex
if it has a single child which is not a leaf.
A tree without semi-lone-parents is semi-
lone-child-avoiding.

semi-lone-child-avoiding

1. https://oeis.org/A331934

0%,
. . AR A e
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Semilinear Conditions for Trees with a Semi-Lone-Parent are
Redundant

Theorem '\f‘ — .\./.

If a tree has a semi-lone-parent vertex, the
corresponding semilinear order condition is
implied by the tree with that vertex removed. 0= b7l — 2, A)"1(I — 2,41 (C_;_ATCZ) 0= bT(I — 7, 4)-1 (%_‘47&)

We only need to consider the set of semi-lone-child-avoiding trees

Order |1 2 3 4 5 6 7 8 9 10
Number of trees [ 1 1 2 4 9 20 48 115 286 719
Number of semi-lone-child-avoiding trees | 1 1 1 2 4 7 15 29 62 129

Lawrence Livermore National Laboratory
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Let’s Express Semilinear Order Conditions in Terms of Classical

Order Conditions

= Classical order p conditions map to
trees with p vertices

= Semilinear order conditions map to
trees with with p vertices that are

not a semi-lone-parent
— The subsets are infinite!

’ V
= Semilinear order conditions can be
viewed as a regrouping of classical 4 f K/. '\I/'
order conditions in Albrecht’s form
Lawrence Livermore National Laboratory CASC NA'SMQQO‘; 35
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Can we Derive Diagonally Implicit Runge—Kutta (DIRK) Methods

with the Semilinear Order Conditions?

= Desired properties
— Order >2
— (Singly) diagonally implicit
— L-stable

= The semilinear conditions coincide with WSO up to order 3
— We can leverage existing DIRK methods designed for linear problems?-?
— Explains better-than-expected convergence in tests

= Order conditions are challenging to solve
— The number or order conditions increases with the order and the number of stages
— We use both symbolic and constrained optimization techniques

1. Ketcheson, David I., et al. "DIRK schemes with high weak stage order." Spectral and High Order Methods for Partial Differential Equations (2020): 453.
2. Biswas, Abhijit, et al. "Design of DIRK schemes with high weak stage order." Communications in Applied Mathematics and Computational Science 18.1 (2023): 1-28.
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SDIRK3SL is a New 3" Order Method for Stiff, Semilinear ODEs

= We minimize the principal error with the order condition constraints

1
k
0

bTCk—l

J

. [ C .
bTAl - — AC]_

J

, k=123

1 ) i:O)

,s—1, j=2,3

= While methods exist with 5 stages, an additional stage significantly improves accuracy

13 13
13 13 0 0 0 0 0
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DIRK4SL is a New 4" Order Method for Stiff, Semilinear ODEs

= Now there are 74 conditions for a 4" order method in 7 stages!
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Allen-Cahn is a Semilinear PDE Modeling Phase Separation

= Consider the 2D Allen-Cahn reaction-diffusion PDE

ou
= = aV?u + f(u—u3) +s(t, x,y)
= | tested methods of order 3 and 4 to validate the

semilinear order conditions

Classical Order Semilinear Order
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Kutta methods for ordinary differential equations. A review. 2016.
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The New Method SDIRK3SL Avoids Order Reduction
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SDIRKA4SL Also Avoids Order Reduction
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Conclusions

= Classical order conditions rely on assumptions that often fail to hold for stiff problems
= The consequence is a reduction in order and efficiency for most Runge—Kutta methods
= We proposed a new error analysis and order condition theory resilient to stiffness

= High stage order is not necessary to avoid order reduction on stiff, semilinear ODEs

= Future work
— Fully nonlinear problems
— Other classes of integrators
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Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security,
LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.



Questions?

To create greater convergence, we need more integration.

—Emmanuel Macron
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