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Problem Statement

§ Goal: solve systems of ordinary differential equations of the form

where 𝑓 ! 𝑦 is nonstiff and 𝑓 " 𝑦 is stiff.

§ Problems of this form arise in
— Advection-diffusion-reaction systems
— Atmospheric modeling1

— Core-collapse supernova2

— Cardiac electrical activity3

𝑦# = 𝑓 ! 𝑦 + 𝑓 " 𝑦 , 𝑦 𝑡$ = 𝑦$, 𝑡 ∈ 𝑡$, 𝑡%

1. Gardner, David J., et al. "Implicit–explicit (IMEX) Runge–Kutta methods for non-hydrostatic atmospheric models." Geoscientific Model Development 11.4 (2018): 1497-1515.
2. Laiu, M. Paul, et al. "A DG-IMEX method for two-moment neutrino transport: Nonlinear solvers for neutrino–matter coupling." The Astrophysical Journal Supplement Series 253.2 (2021): 52.
3. Spiteri, Raymond J., and Ryan C. Dean. "On the performance of an implicit–explicit Runge--Kutta method in models of cardiac electrical activity." IEEE Transactions on Biomedical Engineering 55.5 

(2008): 1488-1495.
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Implicit-Explicit Runge–Kutta

§ Implicit-explicit (IMEX) methods treat 𝑓 ! 𝑦 explicitly and 𝑓 " 𝑦 implicitly.

§ Limit costly implicit solves only to 𝑓 " 𝑦 .

§ Runge–Kutta-based IMEX methods combine an explicit and diagonally implicit 
method.
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Primary Frameworks for Implicit-Explicit Runge–Kutta Methods
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1. Cooper, G. J., and Ali Sayfy. "Additive methods for the numerical solution of ordinary differential equations." Mathematics of Computation 35.152 (1980): 1159-1172.
2. Zhong, Xiaolin. "Additive semi-implicit Runge–Kutta methods for computing high-speed nonequilibrium reactive flows." Journal of Computational Physics 128.1 (1996): 19-31.
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Certain coefficients are duplicated.  Why not utilize all four “A” coefficients?

Primary Frameworks for Implicit-Explicit Runge–Kutta Methods
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Limitations of Current IMEX Frameworks

§ The implicit and explicit methods must have equal number of stages.

§ Simplifying assumptions and order conditions such as

tightly couple base methods. 

§ Rarely can ”optimal” base methods be combined to form a high-order IMEX scheme.

§ Existing IMEX methods are reaching limits for optimizations.
— “it is unclear how these two methods could be substantially improved.” — Kennedy and Carptenter1

𝑏 " = 𝑏 ' , 𝑐 " = 𝑐 ' , 𝑏 ' 𝐴 ' 𝐴 " 𝑐 " =
1
24

1. Kennedy, Christopher A., and Mark H. Carpenter. "Higher-order additive Runge–Kutta schemes for ordinary differential equations." Applied numerical mathematics 136 (2019): 183-205.
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Generalized Additive Runge-Kutta

§ A generalized additive Runge–Kutta (GARK)1 method applied to our ODE reads

§ There are 4 “A” coefficient matrices defining the method.
— Implicit and explicit methods can have a different number of stages.
— Diagonal matrices specify base method and off-diagonal specify coupling.
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1. Sandu, Adrian, and Michael Günther. "A generalized-structure approach to additive Runge-Kutta methods." SIAM Journal on Numerical Analysis 53.1 (2015): 17-42.
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Primary Frameworks for Implicit-Explicit Runge–Kutta Methods

Additive Runge–Kutta (ARK) Additive Semi-Implicit Runge–Kutta
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Example IMEX GARK Method

§ Third order accurate

§ 3 stage explicit method

§ 2 stage SDIRK method

§ No padding required

§ Simple but not very optimized
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Deriving IMEX GARK Methods

§ Pick optimized base methods and solve for 
coupling coefficients.

§ Order conditions for ODEs and index-1 DAEs 
come from tree-based theory.
— Same number of trees as ARK or ASIRK methods.
— Use simplifying assumptions like internal 

consistency.
— Stiffly accurate methods are well-suited to DAEs.

§ Free parameters were used to optimize 
stability and principal error.

§ Over 30 method properties considered!

Order ODE Index-1 DAE

1 𝑏 " 𝟙 = 1
𝑏 ' 𝟙 = 1

𝑏 " 𝟙 = 1
𝑏 ' 𝐴 ',' &!𝐴 '," 𝟙 = 1

2 𝑏 " 𝐴 ",' 𝟙 = 1
⋮

𝑏 ' 𝐴 ',' &! 𝐴 '," 𝟙
#
= 1

⋮

3 14 Conditions 38 Conditions
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5 214 Conditions 1698 Conditions
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GARK3(2)55L[2]DAE: A Third Order IMEX GARK Method
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Comparison of 3rd Order IMEX Methods

Method GARK3(2)55L[2]SA ARK3(2)4L[2]SA BHR(5,5,3)

Info Method from previous slide Kennedy, Christopher A., and Mark H. Carpenter. 
"Additive Runge–Kutta schemes for convection–
diffusion–reaction equations." Applied numerical 

mathematics 44.1-2 (2003): 139-181.

Boscarino, Sebastiano. "On an accurate third order 
implicit-explicit Runge–Kutta method for stiff 

problems." Applied Numerical Mathematics 59.7 
(2009): 1515-1528.
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Comparison of 4th Order IMEX Methods

Method GARK4(3)77L[2]SA ARK4(3)8L[2]DAE ARK4(3)7L[2]SA1

Info New GARK Method New ARK for DAEs Kennedy, Christopher A., and Mark H. Carpenter. 
"Higher-order additive Runge–Kutta schemes for 

ordinary differential equations." Applied numerical 
mathematics 136 (2019): 183-205.

Stages 7 (but with FSAL) 4 (but with FSAL) 7

ODE Order 4 4 4

DAE Order 2 4 3

Principal Error 0.00792 0.00641 0.01112
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Numerical Experiment: BSVD

§ We will test IMEX methods on the BSVD reaction-
diffusion PDE1

§ Space-dependent diffusion term

§ FEnicS used for finite element spatial discretization

§ 100×100 quadrilateral mesh

𝜕𝑢
𝜕𝑡 = ∇ ⋅ 𝐷 𝑥, 𝑦 ∇u + 10 1 − u# u + 0.6

1. Heineken, Wolfram, and Gerald Warnecke. "Partitioning methods for reaction–diffusion problems." Applied numerical mathematics 56.7 (2006): 981-1000.
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Work-Precision Results for BSVD Problem
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Conclusions

§ The GARK framework is a more natural representation of IMEX methods.

§ “Hidden” coupling coefficients are revealed.

§ New IMEX GARK methods of order 3 and 4 have smaller error constants than highly-
optimized ARK methods.

§ Future work
— Improving 4th order methods
— Deriving 5th order methods?
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