Parallel implicit-explicit general linear methods

Steven Roberts, Arash Sarshar, and Adrian Sandu

Computational Science Laboratory "Compute the Future!" Department of Computer Science, Virginia Polytechnic Institute and State University Blacksburg, VA 24060

October 20, 2020

Methods for solving ordinary differential equations

The initial value problem

$$y'=f(y), \qquad y(t_0)=y_0,$$

is a fundamental building block for time-dependent simulation of physical phenomena.

 General linear methods (GLMs) are a large family of methods that generalizes many popular time-stepping families.

Steven Roberts October 20, 2020

Implicit-explicit methods

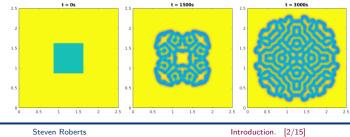
- Explicit methods are cheap but stability limits stepsize. Implicit methods have excellent stability but expensive (non)linear solves.
- Implicit-explicit (IMEX) methods offer a middle ground by combining both. They solve the system

$$y'=f(y)+g(y),$$

where f is nonstiff and g is stiff.

October 20, 2020

Examples include horizontally-explicit/vertically-implicit (HEVI) for atmospheric simulations, as well as advection-diffusion-reaction problems:



🖲 csl.cs.vt.edu

IMEX GLMs I

• One step of an implicit-explicit general linear method (IMEX GLM)¹ is given by

$$Y_{i} = h \sum_{j=1}^{i-1} a_{i,j} f(Y_{j}) + \sum_{j=1}^{i} \widehat{a}_{i,j} g(Y_{j}) + \sum_{j=1}^{r} u_{i,j} y_{j}^{[n-1]}, \qquad i = 1, \dots, s,$$

$$y_{i}^{[n]} = h \sum_{j=1}^{s} \left(b_{i,j} f(Y_{j}) + \widehat{b}_{i,j} g(Y_{j}) \right) + \sum_{j=1}^{r} v_{i,j} y_{j}^{[n-1]}, \qquad i = 1, \dots, r.$$

- They are formed from an explicit GLM $(\mathbf{A}, \mathbf{B}, \mathbf{U}, \mathbf{V})$ and an implicit GLM $(\widehat{\mathbf{A}}, \widehat{\mathbf{B}}, \mathbf{U}, \mathbf{V})$.
- The coefficients of an IMEX GLM are represented by the Butcher tableau

Steven Roberts October 20, 2020 IMEX GLMs. [3/15]

IMEX GLMs II

- For high stage order methods, the order conditions are simple and elegant.
- High stage order makes them an excellent choice for very stiff problems, differential-algebraic equations, or whenever order reduction may be a concern.
- Ensuring IMEX GLMs have good stability at high orders is challenging.
 - Very sophisticated optimization procedures used to derive methods
 - Highest order achieved is six².
- Can we systematically construct stable, high order IMEX GLMs?

¹Zhang, Sandu, and Blaise, "Partitioned and implicit-explicit general linear methods for ordinary differential equations".

 $^2 {\rm Jackiewicz}$ and Mittelmann, "Construction of IMEX DIMSIMs of high order and stage order".

Steven Roberts October 20, 2020 IMEX GLMs. [4/15]

Stage parallelism for IMEX GLMs I

A parallel IMEX GLM is formed from GLMs of types 3 and 4:

$$Y_{i} = \lambda g(Y_{i}) + \sum_{j=1}^{r} u_{i,j} y_{j}^{[n-1]}, \qquad i = 1, ..., s,$$
$$y_{i}^{[n]} = h \sum_{j=1}^{s} \left(b_{i,j} f(Y_{j}) + \widehat{b}_{i,j} g(Y_{j}) \right) + \sum_{j=1}^{r} v_{i,j} y_{j}^{[n-1]}, \qquad i = 1, ..., r.$$

The tableau has the form

Steven Roberts October 20, 2020 Parallel IMEX GLMs. [5/15]

Stage parallelism for IMEX GLMs II

- Our investigation considers parallel IMEX GLMs with p = q = r = s, where p and q are the order and stage order, respectively.
- Provided U is invertible and the c's are distinct, we proved a parallel IMEX GLM is fully determined once the implicit or explicit base is fixed.
- This allowed us to easily extends Butcher's type 4 (parallel, implicit) DIMSIMs³ into IMEX GLMs. Here is a second order method, for example:

³Butcher, "Order and stability of parallel methods for stiff problems".

Steven Roberts October 20, 2020 Parallel IMEX GLMs. [6/15]

Parallel ensemble IMEX Euler I

The simplest IMEX scheme is IMEX Euler

$$y_n = y_{n-1} + h f(y_{n-1}) + h g(y_n),$$

which is only first order accurate.

- Suppose we start with an ensemble of states approximating $y(t_{n-1} + c_i h)$ for i = 1, ..., s.
- In parallel, IMEX Euler is applied to these states to propagate them one timestep forward.
- We take linear combinations of these first order accurate solutions to build a new high order ensemble $y(t_n + c_i h)$ for the text timestep.
- This timestepping strategy can be represented as an IMEX GLM.

Steven Roberts October 20, 2020 Parallel IMEX GLMs. [7/15]

Parallel ensemble IMEX Euler II

• We give a simple way to compute method coefficients using basic matrix operations:

$$\mathbf{A} = \mathbf{0}_{s \times s}, \quad \widehat{\mathbf{A}} = \mathbf{U} = \mathbf{V} = \mathbf{I}_{s \times s}, \quad \mathbf{B} = \mathbf{C} \, \mathbf{F} \, \mathbf{C}^{-1}, \quad \widehat{\mathbf{B}} = \mathbf{C} \, \mathbf{F} \, (\mathbf{I}_{s \times s} - \mathbf{K}) \, \mathbf{C}^{-1},$$

where

$$\mathbf{C} = \begin{bmatrix} \mathbb{1}_{s} \ \mathbf{c} \ \dots \ \frac{\mathbf{c}^{s-1}}{(s-1)!} \end{bmatrix}, \quad \mathbf{F} = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{6} & \dots & \frac{1}{s!} \\ & 1 & \frac{1}{2} & \dots & \frac{1}{(s-1)!} \\ & & \ddots & \ddots & \vdots \\ & & 1 & \frac{1}{2} \\ & & & & 1 \end{bmatrix}, \quad \mathbf{K} = \begin{bmatrix} 0 & 1 & & & \\ & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & & 0 & 1 \\ & & & & 0 \end{bmatrix}$$

- This is a systematic way to generate IMEX GLMs of arbitrary order!
- Stability is essentially identical to that of the IMEX Euler.
- Unfortunately, coefficients become large at very high orders which can lead to an accumulation of finite precision cancellation errors.

Steven Roberts October 20, 2020 Parallel IMEX GLMs. [8/15]

A third order parallel ensemble IMEX Euler method

0	0	0	0	1 0 0	0	0	1	0	0
$\frac{1}{2}$	0	0	0	0	1	0	0	1	0
1	0	0	0	0	0	1	0	0	1
	$\frac{1}{6}$	$\frac{2}{3}$	$\frac{1}{6}$	$\frac{7}{6}$	$\frac{2}{3}$	$-\frac{5}{6}$	1	0 1	0
	$\frac{1}{6}$	$-\frac{1}{3}$	$\frac{7}{6}$	$-\frac{5}{6}$	$\frac{11}{3}$	$-\frac{11}{6}$			
	$\frac{7}{6}$	$\frac{\frac{2}{3}}{-\frac{1}{3}}$ $-\frac{10}{3}$	$\frac{19}{6}$	$-\frac{11}{6}$	$\frac{14}{3}$	$-rac{5}{6}$ $-rac{11}{6}$ $-rac{11}{6}$	0	0	1

Steven Roberts October 20, 2020 Parallel IMEX GLMs. [9/15] 🕷 csl.cs.vt.edu

Numerical experiment: Allen-Cahn

■ We consider a 2D Allen–Cahn reaction-diffusion PDE:

$$\frac{\partial u}{\partial t} = \alpha \nabla^2 u + \beta (u - u^3) + s(t, x, y).$$

- We discretize in space with degree two, continuous finite elements on uniform, triangular mesh.
- The timing experiments use FEniCS⁴ with both OpenMP and MPI parallelism.
- The fourth and fifth order serial methods we tested against are IMEX-DIMSIM4 and IMEX-DIMSIM5 from Zhang, Sandu, and Blaise⁵, as well as ARK4(3)7L[2]SA₁ and ARK5(4)8L[2]SA₂ from Kennedy and Carpenter⁶.

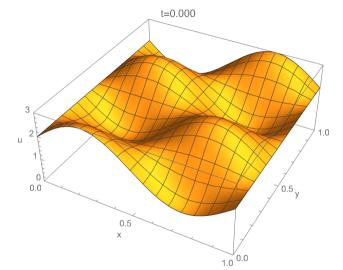
⁶Kennedy and Carpenter, "Higher-order additive Runge-Kutta schemes for ordinary differential equations".

Steven Roberts October 20, 2020

⁴Alnæs et al., "The FEniCS Project Version 1.5".

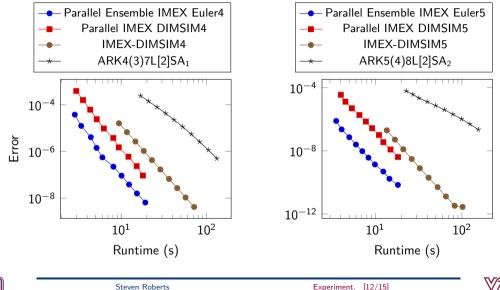
⁵Zhang, Sandu, and Blaise, "High order implicit-explicit general linear methods with optimized stability regions".

Allen-Cahn animation



Steven Roberts October 20, 2020 Experiment. [11/15]

IMEX timing results for Allen–Cahn



Compute the Future!

October 20, 2020

🖲 csl.cs.vt.edu

VIRGINIA TECH

Conclusion

- We propose a systematic approach to develop stable, high order IMEX methods.
- They are suitable for ordinary differential equations, differential algebraic equations, and singular perturbation problems.
- Numerical experiments show parallel IMEX GLMs can outperform traditional, serial IMEX methods.

Steven Roberts October 20, 2020 Conclusion. [13/15] csl.cs.vt.edu

References

Martin S. Alnæs et al. "The FEniCS Project Version 1.5". In: Archive of Numerical Software 3.100 (2015). DOI: 10.11588/ans.2015.100.20553.

John C Butcher. "Order and stability of parallel methods for stiff problems". In: Advances in Computational Mathematics 7.1-2 (1997), pp. 79–96.

Z. Jackiewicz and H. Mittelmann. "Construction of IMEX DIMSIMs of high order and stage order". In: Applied Numerical Mathematics 121 (2017), pp. 234 –248. ISSN: 0168-9274. DOI: 10.1016/j.apnum.2017.07.004.

Christopher A. Kennedy and Mark H. Carpenter. "Higher-order additive Runge-Kutta schemes for ordinary differential equations". In: Applied Numerical Mathematics 136 (2019), pp. 183 -205. ISSN: 0168-9274. DOI: 10.1016/j.apnum.2018.10.007.

H. Zhang, A. Sandu, and S. Blaise. "High order implicit-explicit general linear methods with optimized stability regions". In: SIAM Journal on Scientific Computing 38.3 (2016), A1430-A1453. DOI: 10.1137/15M1018897.

H. Zhang, A. Sandu, and S. Blaise. "Partitioned and implicit-explicit general linear methods for ordinary differential equations". In: Journal of Scientific Computing 61.1 (2014), pp. 119–144. DOI: 10.1007/s10915-014-9819-z. URL: http://dx.doi.org/10.1007/s10915-014-9819-z.

Steven Roberts October 20, 2020 References. [14/15]

Questions?

- Paper is available at https://arxiv.org/pdf/2002.00868.pdf
- Links to the paper and presentation are also available at https://steven-roberts.github.io/

Steven Roberts October 20, 2020 Questions. [15/15] 🕐 csl.cs.vt.edu

