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Methods for solving ordinary differential equations

The initial value problem
y ′ = f (y), y(t0) = y0,

is a fundamental building block for time-dependent simulation of physical phenomena.
General linear methods (GLMs) are a large family of methods that generalizes many
popular time-stepping families.

General Linear Method

Linear Multistep
Method

Runge–Kutta

Yi = h
s∑

j=1
ai ,j f (Yj) +

r∑
j=1

ui ,j y [n−1]
j

y [n]
i = h
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bi ,j f (Yj) +
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vi ,j y [n−1]

j
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Implicit-explicit methods
Explicit methods are cheap but stability limits stepsize. Implicit methods have excellent
stability but expensive (non)linear solves.
Implicit-explicit (IMEX) methods offer a middle ground by combining both. They solve
the system

y ′ = f (y) + g(y),
where f is nonstiff and g is stiff.
Examples include horizontally-explicit/vertically-implicit (HEVI) for atmospheric
simulations, as well as advection-diffusion-reaction problems:
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IMEX GLMs I

One step of an implicit-explicit general linear method (IMEX GLM)1 is given by

Yi = h
i−1∑
j=1

ai ,j f (Yj) +
i∑

j=1
âi ,j g(Yj) +

r∑
j=1

ui ,j y [n−1]
j , i = 1, . . . , s,

y [n]
i = h

s∑
j=1

(
bi ,j f (Yj) + b̂i ,j g(Yj)

)
+

r∑
j=1

vi ,j y [n−1]
j , i = 1, . . . , r .

They are formed from an explicit GLM (A,B,U,V) and an implicit GLM (Â, B̂,U,V).
The coefficients of an IMEX GLM are represented by the Butcher tableau

c A Â U
B B̂ V

.
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IMEX GLMs II

For high stage order methods, the order conditions are simple and elegant.
High stage order makes them an excellent choice for very stiff problems,
differential-algebraic equations, or whenever order reduction may be a concern.
Ensuring IMEX GLMs have good stability at high orders is challenging.

Very sophisticated optimization procedures used to derive methods
Highest order achieved is six2.

Can we systematically construct stable, high order IMEX GLMs?

1Zhang, Sandu, and Blaise, “Partitioned and implicit-explicit general linear methods for ordinary differential equations”.
2Jackiewicz and Mittelmann, “Construction of IMEX DIMSIMs of high order and stage order”.
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Stage parallelism for IMEX GLMs I
A parallel IMEX GLM is formed from GLMs of types 3 and 4:

Yi = λ g(Yi ) +
r∑

j=1
ui ,j y [n−1]

j , i = 1, . . . , s,

y [n]
i = h

s∑
j=1

(
bi ,j f (Yj) + b̂i ,j g(Yj)

)
+

r∑
j=1

vi ,j y [n−1]
j , i = 1, . . . , r .

The tableau has the form
c 0s×s λ Is×s U

B B̂ V
.
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Stage parallelism for IMEX GLMs II
Our investigation considers parallel IMEX GLMs with p = q = r = s, where p and q are
the order and stage order, respectively.
Provided U is invertible and the c’s are distinct, we proved a parallel IMEX GLM is fully
determined once the implicit or explicit base is fixed.
This allowed us to easily extends Butcher’s type 4 (parallel, implicit) DIMSIMs3 into
IMEX GLMs. Here is a second order method, for example:

0 0 0 λ 0 1 0
1 0 0 0 λ 0 1

4λ−3
4

4λ−3
4

(2λ+1)(4λ−3)
4

−8λ2+10λ−3
4

4λ−3
2

5−4λ
2

4λ−5
4

4λ+3
4

8λ2+2λ−5
4

−8λ2+6λ+3
4

4λ−3
2

5−4λ
2

, λ = 3−
√

3
2 .

3Butcher, “Order and stability of parallel methods for stiff problems”.
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Parallel ensemble IMEX Euler I
The simplest IMEX scheme is IMEX Euler

yn = yn−1 + h f (yn−1) + h g(yn),

which is only first order accurate.
Suppose we start with an ensemble of states approximating y(tn−1 + ci h) for i = 1, . . . , s.
In parallel, IMEX Euler is applied to these states to propagate them one timestep forward.
We take linear combinations of these first order accurate solutions to build a new high
order ensemble y(tn + ci h) for the text timestep.
This timestepping strategy can be represented as an IMEX GLM.
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Parallel ensemble IMEX Euler II
We give a simple way to compute method coefficients using basic matrix operations:

A = 0s×s , Â = U = V = Is×s , B = C F C−1, B̂ = C F (Is×s −K) C−1,

where

C =
[
1s c . . . cs−1

(s−1)!

]
, F =


1 1

2
1
6 . . . 1

s!
1 1

2 . . . 1
(s−1)!

. . . . . .
...

1 1
2
1

 , K =


0 1

0 1
. . . . . .

0 1
0

 .

This is a systematic way to generate IMEX GLMs of arbitrary order!
Stability is essentially identical to that of the IMEX Euler.
Unfortunately, coefficients become large at very high orders which can lead to an
accumulation of finite precision cancellation errors.
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A third order parallel ensemble IMEX Euler method
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Numerical experiment: Allen–Cahn

We consider a 2D Allen–Cahn reaction-diffusion PDE:

∂u
∂t = α∇2u + β (u − u3) + s(t, x , y).

We discretize in space with degree two, continuous finite elements on uniform, triangular
mesh.
The timing experiments use FEniCS4 with both OpenMP and MPI parallelism.
The fourth and fifth order serial methods we tested against are IMEX-DIMSIM4 and
IMEX-DIMSIM5 from Zhang, Sandu, and Blaise5, as well as ARK4(3)7L[2]SA1 and
ARK5(4)8L[2]SA2 from Kennedy and Carpenter6.

4Alnæs et al., “The FEniCS Project Version 1.5”.
5Zhang, Sandu, and Blaise, “High order implicit–explicit general linear methods with optimized stability regions”.
6Kennedy and Carpenter, “Higher-order additive Runge–Kutta schemes for ordinary differential equations”.
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Allen–Cahn animation
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IMEX timing results for Allen–Cahn

101 102

10−8

10−6

10−4

Runtime (s)

Er
ro

r
Parallel Ensemble IMEX Euler4

Parallel IMEX DIMSIM4
IMEX-DIMSIM4

ARK4(3)7L[2]SA1

101 102
10−12

10−8

10−4

Runtime (s)

Parallel Ensemble IMEX Euler5
Parallel IMEX DIMSIM5

IMEX-DIMSIM5
ARK5(4)8L[2]SA2

Steven Roberts
October 20, 2020

Experiment. [12/15]
m csl.cs.vt.edu

csl.cs.vt.edu


Conclusion

We propose a systematic approach to develop stable, high order IMEX methods.
They are suitable for ordinary differential equations, differential algebraic equations, and
singular perturbation problems.
Numerical experiments show parallel IMEX GLMs can outperform traditional, serial IMEX
methods.
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Questions?

Paper is available at https://arxiv.org/pdf/2002.00868.pdf

Links to the paper and presentation are also available at
https://steven-roberts.github.io/
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