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Why use multirate methods?

Many dynamical systems exhibit multiple characteristic timescales.

y ′ = f (y) = f {f}(y) + f {s}(y), y(t0) = y0

Example: Wind, temperature, and salinity in a simplified climate model
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What are multirate methods?

Integrate the slow partition with Runge–Kutta method
(
A{s,s}, b{s}

)
using a stepsize H

Integrate the fast partition with Runge–Kutta method
(
A{f,f}, b{f}

)
using a stepsize

h = H/M

M is called the multirate ratio

Coupling information needs to be shared between slow and fast integrations.

Why use implicit method for both fast and slow dynamics?

Adapting timesteps to accuracy requirements can improve efficiency.
Decoupled methods simplify Newton iterations.
Certain parts of system may slow down Newton iterations.
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Multirate Runge–Kutta
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Predictor-corrector multirate Runge–Kutta1
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1Savcenco et al., A multirate time stepping strategy for parabolic PDE.
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GARK provides a theoretical foundation
A generalized-structure additively partitioned Runge–Kutta (GARK)2 method with two
partitions reads
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The corresponding tableau is
A{f,f} A{f,s}

A{s,f} A{s,s}

b{f}T b{s}T
.

Internal consistency: c{f} ≡ A{f,f}1s{f} = A{f,s}1s{s} and c{s} ≡ A{s,f}1s{f} = A{s,s}1s{s}

2Sandu & Günther, “A generalized-structure approach to additive Runge-Kutta methods”.
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Multirate Runge–Kutta methods are GARK methods

Standard MrGARK3:

1
MA . . . 0 A{f,s,1}

...
. . .

...
...

1
M1sb

T . . . 1
MA A{f,s,M}

1
MA{s,f,1} . . . A{s,f,M} A

1
M bT . . . 1

M bT bT

.

Predictor-corrector MrGARK:

A 0 . . . 0 A

0 1
MA . . . 0 A{f,s,1}

0
...

. . .
...

...

0 1
M1sb

T . . . 1
MA A{f,s,M}

A 0 . . . 0 A

0 1
M bT . . . 1

M bT bT

.

3Günther & Sandu, “Multirate generalized additive Runge Kutta methods”.
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Challenges in developing implicit multirate methods

Order conditions grow quickly in quantity and complexity.

How can we balance the cost of solving nonlinear equations with stability?

Linear stability is surprisingly complex, and there are many open research questions.

Many results on stability are limited to particular methods.

“Stability properties of various multirate schemes have been discussed . . . . However,
most of these discussions are not very detailed, nor very conclusive.” Kværnø, “Stability
of multirate Runge–Kutta schemes”

“Even though the multirate scheme considered in this paper is quite simple, the stability
analysis will turn out to be complicated.” Hundsdorfer & Savcenco, “Analysis of a
Multirate Theta-method for Stiff ODEs”
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MrGARK Order Conditions

The MrGARK order conditions follow from substituting tableau structure into GARK
order conditions.

Assuming internal consistency, the cumulative number of order conditions is

Method Order 1 Order 2 Order 3 Order 4

Standard MrGARK4 2 4 10 36
Predictor-corrector MrGARK 2 4 9 29

Predictor-corrector order conditions are more precise than usual technique of finding
dense output of sufficient accuracy. The third order coupling condition, for example, is

M

6
=

M∑
λ=1

bTA{f,s,λ}c .

4Sarshar et al., “Design of High-Order Decoupled Multirate GARK Schemes”.
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Newton iterations

The most computationally expensive part of implicit multirate methods

Decoupled methods

Implicitness only comes from base methods
Only requires decompositions of I − h γ J{f} and I − H γ J{s}

Efficient for component partitioned problems

Coupled methods

Fast and slow stages solved together
Potentially very expensive
Practical methods require linear solves no more expensive than those of their singlerate
counterparts.
Potential for better stability
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Scalar stability function

We can generalize the Dahlquist test problem by

y ′ = f {f}(y)+f {s}(y)
linearize
====⇒ y ′ = J{f} y+J{s} y

change basis*
=======⇒ y ′ = λ{f} y+λ{s} y

*Only if J{f}(y) and J{s}(y) are simultaneously triangularizable

*Multirate stability is not invariant under change of basis5.

Applying the scalar test problem yields a stability function R1(z{f}, z{s}) with
z{f} = Hλ{f} and z{s} = Hλ{s}.

Stability criteria

A-Stability:
∣∣R1(z{f}, z{s})

∣∣ ≤ 1 for all z{f}, z{s} ∈ C−

L-Stability: A-stability and R1(∞, z{s}) = R1(z{f},∞) = 0
A(α)- and L(α)-stability: A 4D wedge fits in stability region

5Gear & Wells, “Multirate linear multistep methods”.
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2D stability function

At least two variables are needed for a component partitioned test problem:[
y{f}

y{s}

]′
=

[
λ{f} η{s}

η{f} λ{s}

]
︸ ︷︷ ︸

Λ

[
y{f}

y{s}

]
.

Applying the scalar test problem yields a stability function R2(Z ) ∈ C2×2 with Z = HΛ.

Stability criteria

A-Stability: R2(Z ) power bounded for all Z exponentially bounded with z{f}, z{s} ∈ C−
Many have restricted the problem to real entries to simplify analysis.
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Even more ways to assess stability

Others have looked at block test problems:[
y{f}

y{s}

]′
=

[
Λ{f} E {s}

E {f} Λ{s}

] [
y{f}

y{s}

]
.

Algebraic stability: If f {f} and f {s} are dissipative, then ‖yn+1 − ỹn+1‖ ≤ ‖yn − ỹn‖.
How do the stability criteria compare?
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Our findings on stability analysis

E-Polynomial can be generalized for scalar test problem

The scalar and 2D stability functions are related:

R1

(
z{f}, z{s}

)
=
[
1 1

]
R2

([
z{f} z{f}

z{s} z{s}

])[
α

1− α

]
.

Theorem

If a GARK method is A-stable with respect to the 2D test problem, then it is A-stable with
respect to the scalar test problem.

Theorem

A decoupled GARK method is conditionally stable for the real 2D test problem.
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GARK stability hierarchy

2D A-stability Real 2D A-stability

Algebraic stability Scalar A-stability Scalar A(α)-stability

Scalar L-stability Scalar L(α)-stability

In general, no implication arrows are reversible.
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New general stability function for predictor-corrector MrGARK

Using the particular structure of predictor-corrector coupling, we found the scalar stability
function is

R1

(
z{f}, z{s}

)
= R

(
z{f}

M

)M

+ z{s}

bT +
z{f}

M
bT
(
Is×s −

z{f}

M
A

)−1 M∑
λ=1

R

(
z{f}

M

)M−λ

A{f,s,λ}

 Rint(z),

with z = z{f} + z{s}.

If R(∞) = 0 for the base method, then the condition

A{f,s,λ} A−1
1s = 1s

ensures R1(∞, z{s}) = 0.
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First order multirate methods

Many coupling structures have been explored.

Surprising stability limitation:

Theorem

An internally consistent MrGARK method of order exactly one has conditional scalar stability
for all but a finite number of multirate ratios.
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Higher order multirate methods

We found a decoupled multirate midpoint method that preserves the algebraic stability,
symmetry, and symplecticity of the midpoint method.

New predictor-corrector up to order four that are close to scalar L-stable:

Method M = 2 M = 3 M = 4 M = 8 M = 16 M = 32

SDIRK 2 84.6◦ 83.5◦ 83.2◦ 83.0◦ 83.0◦ 83.0◦

SDIRK 3 88.6◦ 87.8◦ 87.3◦ 86.9◦ 86.8◦ 86.8◦

SDIRK 4 81.7◦ 81.2◦ 81.2◦ 81.2◦ 81.2◦ 81.2◦

Table: Scalar L(α)-stability for new predictor-corrector MrGARK methods.

Internal consistency seems to inhibit stability.
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The Gray–Scott model

[
u
v

]′
︸︷︷︸
y ′

=

[
∇ · (εu∇u)
∇ · (εv∇v)

]
︸ ︷︷ ︸

f {s}(y)

+

[
−uv2 + f(1− u)
uv2 − (f + k)

]
︸ ︷︷ ︸

f {f}(y)
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Gray–Scott convergence test

M = 2 M = 4 M = 6
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Inverter chain: a classic multirate test problem

U ′1 = Uop − U1 − g(Uin,U1,U0),

U ′i = Uop − Ui − g(Ui−1,Ui ,U0), i = 2, . . .m,

g(Ug ,UD ,US) = (max(UG − US − UT , 0))2 − (max(UG − UD − UT , 0))2

0 5 10 15 20 25 30
t

0

1

2

3

4

5

V
ol

ta
ge

Inverter Chain
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Setup for inverter chain performance results

Dynamic partitioning is used to select fast parts of circuit

Performance depends heavily on implementation details

Linear solver
Stage value predictor
Newton tolerances
Programming language

Work is measured by accumulating the dimension of each linear solve performed across
integration.
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Inverter chain performance results

Singlerate M = 2 M = 4 M = 8 M = 16
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Conclusions

Linear stability is surprisingly challenging for multirate methods.

GARK provides overarching framework to analyze multirate Runge–Kutta methods.

Order conditions
Stability

We derive general stability results and fundamental stability limitations.

New methods are derived up to order four.
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Questions?

Slides available at https://steven-roberts.github.io/
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