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§ Consider the initial value problem

𝑦! = 𝑓 𝑦 , 𝑦 𝑡" = 𝑦" ∈ ℂ#, 𝑡 ∈ 𝑡", 𝑡$ .

§ We will focus on explicit methods for nonstiff problems.

§ In scientific applications, the dimension 𝑁 can be intractably large and evaluations of 
𝑓 prohibitively expensive.

§  How can we reduce the number of evaluations of 𝑓 without sacrificing
— Accuracy
— Stability
— Convergence

Goal: solve large-scale initial value problems
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§ For many problems, it is possible to produce a cheap but approximate surrogate 
model.

§ For complex problems, surrogate models cannot outright replace the full model 𝑓.

What about surrogate models?

Machine Learning Coarser Mesh Reduced-Order Model
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§ For convergence, we cannot escape evaluating the full model.

§ An ideal hybrid approach would use the surrogate model to substantially reduce 
evaluations of the full model.

§ Surrogate models have been successfully incorporated into optimization algorithms.

§ There are some related ideas in the context of time integration
— Rosenbrock-W methods
— Coupling a reduced order model and multirate method1

— Mixed Precision Runge-Kutta methods2
— Defect correction
— Heterogeneous multiscale method3

How can we combine full and surrogate models?

1. Hachtel, Christoph, et al. "Multirate DAE/ODE-simulation and model order reduction for coupled field-circuit systems." Scientific Computing in Electrical Engineering. Springer, 
Cham, 2018. 91-100.

2. Grant, Zachary J. "Perturbed Runge–Kutta Methods for Mixed Precision Applications." Journal of Scientific Computing 92.1 (2022): 1-20.
3. Abdulle, Assyr, et al. "The heterogeneous multiscale method." Acta Numerica 21 (2012): 1-87.
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§ Recall the full model we want to integrate is

𝑦! = 𝑓 𝑦 , 𝑦 𝑡 ∈ ℂ#.

§ The surrogate model is also posed as an ODE:

𝑦%&'! = 𝑓%&' 𝑦%&' , 𝑦%&' 𝑡 ∈ ℂ(.

§ The surrogate model may evolve in a lower-dimensional space: 𝑆	 < 	𝑁.

§ Transformations between the full and surrogate spaces are realized by 𝑉,𝑊 ∈ ℂ#×(:

𝑦%&' = 𝑊∗𝑦, 𝑦 ≈ 𝑉𝑦%&', 𝑊∗𝑉 = 𝐼(×(.

Defining the surrogate model
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§ The original, full ODE can be rewritten in the equivalent form

𝑦! = 𝑉𝑓%&' 𝑊∗𝑦 + 𝑓 𝑦 − 𝑉𝑓%&' 𝑊∗𝑦 ∈ ℂ#.

§ Idea: apply a multirate method to this ODE.
— The “fast” partition is the surrogate model and is treated with a small timestep.
— The “slow” partition is the surrogate error and is treated with a large timestep.

§ The surrogate model is evaluated often to guide the solution trajectory while the 
expensive full model is evaluated infrequently to correct for surrogate errors.

§ Accuracy, stability, and convergence properties are based on the underlying multirate 
method.

Surrogate acceleration with multirate methods
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§ With 6 decades of development, there are many options!

§ Any method suitable for additively-partitioned systems should suffice.

§ Multirate infinitesimal (MRI) methods have gain traction in recent years.
— Fast dynamics are evolved by solving ODEs with any consistent integrator.
— Very flexible

Which multirate methods should we use?
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§ Our multirate ODE is

𝑦! = 𝑓 $ 𝑦 + 𝑓 % 𝑦 .

§ Consider the simple multirate infinitesimal method

𝑣 0 = 𝑦+,
𝑣! 𝜃 = 𝑓 $ 𝑣 𝜃 + 𝑓 % 𝑦+ ,
𝑦+,- = 𝑣 𝐻 .

§ There is one evaluation of 𝑓 %  per step.

§ 𝑓 $  is evaluated as many times as it takes to integrate 𝑣 to 𝜃 = 𝐻.

Multirate infinitesimal Euler example
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§ When we apply the multirate Euler method to our ODE, we arrive at

𝑧 0 = 𝑊∗𝑦+,
𝑧! 𝜃 = 𝑓%&' 𝑧 𝜃 +𝑊∗𝑓 𝑦+ − 𝑓%&' 𝑊∗𝑦+ ,
𝑦+,- = 𝑉	𝑧 𝐻 + 𝐼#×# − 𝑉𝑊∗ 𝑦+ +𝐻	𝑓 𝑦+ .

§ 𝑧 𝜃 ∈ ℂ( is integrated in the range of 𝑉.

§ An Euler step is taken in the nullspace of 𝑊∗.

§ There is one evaluation of the full model per step and many for the surrogate model.

Multirate infinitesimal Euler example 𝑦! = 𝑉𝑓"#$ 𝑊∗𝑦 + 𝑓 𝑦 − 𝑉𝑓"#$ 𝑊∗𝑦
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Multirate 
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Multirate 
Infinitesimal Runge-

Kutta

MIS Methods
Knoth, Oswald, and Ralf Wolke. 

"Implicit-explicit Runge-Kutta methods 
for computing atmospheric reactive 

flows." APNUM (1998)

MRI-GARK
Sandu, Adrian. "A class of multirate 

infinitesimal GARK 
methods." SINUM (2019)

SPC-MRI-GARK
Roberts, Steven, Arash Sarshar, and 
Adrian Sandu. "Coupled multirate 

infinitesimal GARK schemes for stiff 
systems with multiple time 

scales." SISC (2020)

Many others!

M
ore Steps Multirate 

Infinitesimal Linear 
Multipstep Methods

Adams-type MTS
Demirel, Abdullah, et al. "Efficient 

multiple time-stepping algorithms of 
higher order." JCP 285 (2015): 133-148.

General frameworks for multirate infinitesimal methods
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§ Let’s replace multirate Euler with MRI-GARK to achieve higher orders.

§ A surrogate model MRI-GARK (SM-MRI-GARK)1 method is given by

𝑌! = 𝑦",
𝑧# 0 = 𝑊∗𝑌# ∈ ℂ%,

𝑧#& 𝜃 = Δ𝑐#
' 𝑓'() 𝑧# 𝜃 +/

*+!

#,!

𝛾#,*
𝜃
𝐻

𝑊∗𝑓 𝑌* − 𝑓'() 𝑊∗𝑌* ,

𝑌#,! = 𝑉	𝑧# 𝐻 + 𝐼.×. − 𝑉𝑊∗ 𝑌# + 𝐻/
*+!

#,!

�̅�#,*𝑓 𝑌* , 𝑖 = 1, … , 𝑠 ' ,

𝑦",! = 𝑌' ! ,!.

SM-MRI-GARK

1. Roberts, Steven, et al. "A Fast Time-Stepping Strategy for Dynamical Systems Equipped with a Surrogate Model." SIAM Journal on Scientific Computing 44.3 
(2022): A1405-A1427.

𝑦! = 𝑉𝑓"#$ 𝑊∗𝑦 + 𝑓 𝑦 − 𝑉𝑓"#$ 𝑊∗𝑦
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Illustration of the time-stepping approach
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§ If instead we base our method on SPC-MRI-GARK we have the class of surrogate 
model SPC-MRI-GARK (SM-SPC-MRI-GARK)1:

𝑌# = 𝑦" + 𝐻/
*+!

' !

𝑎#,*
' 𝑓 𝑌* , 𝑖 = 1, … , 𝑠 ' ,

𝑧 0 = 𝑊∗𝑦" ∈ ℂ%,

𝑧& 𝜃 = 𝑓'() 𝑧 𝜃 +/
*+!

' !

𝛾*
𝜃
𝐻

𝑊∗𝑓 𝑌* − 𝑓'() 𝑊∗𝑌* ,

𝑦",! = 𝑉	𝑧 𝐻 + 𝐼.×. − 𝑉𝑊∗ 𝑦" + 𝐻/
*+!

' !

𝑏*𝑓 𝑌*

SM-SPC-MRI-GARK

1. Roberts, Steven, et al. "A Fast Time-Stepping Strategy for Dynamical Systems Equipped with a Surrogate Model." SIAM Journal on Scientific Computing 44.3 
(2022): A1405-A1427.

𝑦! = 𝑉𝑓"#$ 𝑊∗𝑦 + 𝑓 𝑦 − 𝑉𝑓"#$ 𝑊∗𝑦
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§ Finally, an Adams-type MTS method yields a surrogate model MRI Adams-Bahsforth 
(SM-MRI-AB):

𝑧 0 = 𝑊∗𝑦+,

𝑧! 𝜃 = 𝑓%&' 𝑧 𝜃 +8
56"

78-

𝛾
𝜃
𝐻

∇5 𝑊∗𝑓 𝑦+ − 𝑓%&' 𝑦+ ,

𝑦+,- = 𝑣 𝐻 + 𝐼#×# − 𝑉𝑊∗ 8
56-

78-

�̅�∇5𝑓 𝑦+ .

SM-MRI-AB 𝑦! = 𝑉𝑓"#$ 𝑊∗𝑦 + 𝑓 𝑦 − 𝑉𝑓"#$ 𝑊∗𝑦
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§ The Lorenz ‘96 is a 40 variable ODE

𝑑𝑋7
𝑑𝑡

= −𝑋789𝑋78- + 𝑋78-𝑋7,- − 𝑋7 + 𝐹.

§ In an offline phase, 5000 snapshots of the 
trajectory and its derivative were generated 
over the timespan [2, 10].

§ A 3-layer neural network was trained on the 
data to approximate the RHS function 𝑓.

§ The neural network acts as 𝑓%&', and 𝑉 =
𝑊 = 𝐼:"×:".

Numerical experiment: Lorenz ‘96
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Numerical experiment: Lorenz ‘96
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Numerical experiment: Lorenz ‘96
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§ Consider the Molenkamp-Crowley problem

𝜕𝑢
𝜕𝑡
+ 𝑎 ⋅ 𝛻𝑢 = 0, on	Ω = 0,1 9,

𝑢 = 0, on	𝜕Ω,

with the circular wind profile	𝑎 𝑥, 𝑦 .

§ 𝑓 corresponds to a discontinuous Galerkin 
discretization on a 100×100 uniform triangular 
mesh, while 𝑓%&' uses a 50×50 mesh.

§ 𝑉 and 𝑊∗ are sparse interpolation operators.

Numerical experiment: DG advection
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Numerical experiment: DG advection
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§ New methods extend traditional Runge-Kutta and linear multistep methods to 
incorporate information from a surrogate model.

§ This work broadens the scope and applicability of multirate methods.

§ The quality of the surrogate model does not affect the order of convergence.

§ Experiments show large speedups over traditional integrators, especially when 𝑉, 𝑊∗, 
and 𝑓%&' are inexpensive.

§ Future work
— Additional testing of methods based on linear multistep methods
— Support for surrogate models that are flow maps instead of ODEs

Conclusions
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