Overcoming First Order
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(Multi)physics Simulations Often use Low Temporal Order

= Sometimes this is fine
— Non-smoothness
— Low accuracy is acceptable

= Sometimes high order brings skepticism
— Will the cost per step be too high?

— Will the stability improve enough to offset
the cost?

= Sometimes the numerical method is to
blame

— Low order splitting methods limit the overall
(0) rd er Time= 5.000 years

— Stiffness may cause order reduction
— Constraints are not accurately enforced
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This Talk will Focus on Runge-Kutta Methods

= A Runge-Kutta method solves the ordinary differential equation (ODE)

y' =f), y(t) =y

with the numerical procedure

S

Yl.:yn+At2ai’jf(Yj), i=1,..,s, cl A

J=1

- T
Yn+1 = Yn T+ AtE b]f(lﬂ) b
=
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Part 1: Stiff Order Conditions and Runge-Kutta Methods for
Semilinear ODEs

This work was done in collaboration with

gy Abhijit Biswas
e King Abdullah University of Science and
B Technology

David Shirokoff

; > New Jersey Institute of Technology

David Ketcheson
King Abdullah University of Science and
Technology

Benjamin Seibold
Temple University
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Order Reduction Arises From Simple Problems

= Prothero and Robinson! proposed the simple problem

y =y — @) + ¢'(t)

= When |1] > At™1, a Runge-Kutta method may converge at an order lower than the
classical order.

= This phenomenon is called order reduction.

= Classical order condition theory makes unrealistic assumptions for stiff problems
— The right-hand side has a moderate Lipschitz constant independent of At: ||[f (y) — f(2)]|| <

Llly — z||
— The time step is “sufficiently small”

1. Prothero, A., and A. Robinson. "On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations." Mathematics of Computation 28.125 (1974): 145-162.
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The Prothero-Robinson Problem Reveals Order Reduction

Fourth Order SDIRK on the Prothero-Robinson Problem
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My Problem Does Not Look Like This

y' =2y — @) + ¢'(t)

What about PDEs?
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Linear PDEs also Cause Order Reduction

= Much of the Prothero-Robinson convergence theory extends to linear PDEs

u; = L(x,0)u + g(t)

= We often see fractional convergence orders depending on L(x, @) and the norm used?

Many authors have identified the additional stiff order conditions

k

c
0=>bT(I-2z4A)"" (Ack_1 —-—

k>; VZE«:_,kZ]_,___’q

= The largest g for which this holds is the weak stage order? or pseudostage order?
— Explicit and diagonally implicit methods can have high weak stage order

1. Ostermann, Alexander, and Michel Roche. "Runge-Kutta methods for partial differential equations and fractional orders of convergence." Mathematics of Computation 59.200 (1992): 403-420.
2. Ketcheson, David I., et al. "DIRK schemes with high weak stage order." Spectral and High Order Methods for Partial Differential Equations (2020): 453.
3. Skvortsov, LM. "How to avoid accuracy and order reduction in Runge—Kutta methods as applied to stiff problems." Computational Mathematics and Mathematical Physics 57 (2017): 1124-1139.
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What Happens on a Simple Advection PDE?

= Let’s solve the following PDElon t,x € [0,1]:

t—x 1 1 [yt
Uy = —ux-|-—2, _E (1+¢t)2 Ax(1+¢t)
, (1+1¢t) 1 1 t—Xx;
u(t, O) _ s Semidiscretize y’ = E _.A_x | y + (1 _|_ t)2
w(0,x) =1+x 1 1 t—xy
Ax  Ax (1 + t)?

= This finite difference discretization contributes no spatial error.

: : : 1 : : :
= The Lipschitz constantis L = o Sowe need At < CAx to be in the asymptotic regime.

— This looks like a CFL condition even for implicit methods

1. Sanz-Serna, Jesus Maria, Jan G. Verwer, and W. H. Hundsdorfer. "Convergence and order reduction of Runge-Kutta schemes applied to evolutionary problems in partial differential
equations." Numerische Mathematik 50.4 (1986): 405-418.
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We Solve the Advection PDE with Two Fourth Order DIRK
Methods from SUNDIALS

i| % 6 o0 0 0 0 0 0 0 0 0
il +# 0 o0 o0 0.871733043 |  0.4358665215 0.4358665215 0 0 0
T N 0.468238744853136 | 0.140737774731968 —0.108365551378832  0.4358665215 0 0
1l _1 15 1 g 1| 0.102399400616089 —0.376878452267324 0.838612530151233  0.4358665215 0
1|3 _# 1 s o1 1| 0.157024897860995 0.117330441357768  0.61667803039168 —0.326899891110444 (0.4358665215
5 & 1 s 1 4 | 0.157024897860995  0.117330441357768  0.61667803039168 —0.326899891110444 0.4358665215
3 8 _n om s 3 | 0.102399400616089 —0.376878452267324 0.838612530151233  0.4358665215 0
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We See Asymptotic Convergence on a 16 Point Grid

—o— Kvaerno-5-3-4
—&— SDIRK-5-3-4

| Error
O
Order
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We See Order Reduction on a 2048 Point Grid
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My Problem Does Not Look Like This

u, = L(x,d)u + g(t)

What about nonlinear problems?
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Nonlinear Problems Require Stringent Order Conditions

= Nonlinearity often worsens order reduction
= The typical remedy is high stage order

k

c
C(q): Ack 1= ? k=1,..,q,
Z ok
k

B(p): bTck 1= =1,..,p

= This is very restrictive!
— Explicit methods have max stage order of 1
— Diagonally implicit methods have max stage order of 2

= Within the Runge-Kutta family, fully implicit schemes are seemingly the only ones that
can achieve high orders outside the classical regime.
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We Consider Semilinear Problems

= |[n nonlinear problems, stiffness often arises from linear terms

= Let’s consider semilinear problems

=]yt g®)
Stiff Nonstiff
Re(y,Jy) <0 lg(y) —g(@)| < Lly — 2

= Examples include
— Patten-forming diffusion reaction problems

— Schrédinger equations
— Air pollution transport models
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The Situation for Semilinear Problems is Unclear

C(@): A t=—, k=1,..,q

B(p): bTck1=

= Do we need the restrictive condition of high

stage order for semilinear problems?
— The literature suggests yes

= Are there sharper order conditions for
semilinear problems?

= Can we find methods devoid of order

reduction with practical structures?
— We will focus on diagonally implicit methods

Theorem 3.3: Let o, ff € R be given. Assume the Runge-Kutta method (1.3) is A-stable,
AS-stable and ASI-stable. Then we have for the class of problems (1.5) satisfying (1.6)
the (optimal) B-convergence result

lex|<Ct? (0<t<7)
with order
(@) p=q ifiB(q),C(q),
(by p=q+] if Blg+1), C(g)land y is uniformly bounded on C".

Burrage, Kevin, W. H. Hundsdorfer, and Jan G. Verwer. "A study of B-
convergence of Runge-Kutta methods." Computing 36.1-2 (1986): 17-34.

q if}B(g) and C(g) hold,
(3.3) p=< q+1 if{B(g+ 1)and C(g)hold and #(z)

is uniformly bounded on C—,

THEOREM 3.4.

i) All Runge-Kutta methods of the family M, are convergent on the class F,
with order p given by (3.3)-(3.5).

ii) All Runge-Kutta methods of the family Ms are convergent on the class F»
with order p given by (3.3)(3.5).

Calvo, M., S. Gonzdlez-Pinto, and J. I. Montijano. "Runge-Kutta methods for the
numerical solution of stiff semilinear systems." BIT Numerical Mathematics 40
(2000): 611-639.

evie,
Lawrence Livermore National Laboratory 2 % CASC
LLNL-PRES-852733 ‘,000.3;..’

NVYSE

National Nuclear Security Administration

16



Sharper Order Conditions Do Exists for Stiff Semilinear Problems

= We propose conditions that ensure a
: : Standard
Convergence Order Umformly Wlth Label | Treet Fo?‘lx;l i?t Order Condition

contain weak stage order condition
— They coincide up to order 3

respect to stiffness ;Z } [[v:r‘]] 0=1-b1
= Like classical order conditions, there is wl V)
1-to-1 correspondence with rooted 3b } iy
trees wl W
4b \} [ [7]]
= The semilinear order conditions P D S R (2 - 22)
;

4d (7] | 0=0bT(I — 20A) " A(I — 2,A)~}(I — 234)~ (7 - Ac)

= The semilinear order conditions are
sharper than stage order conditions
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Our Error Expansion Uses Bounded Terms

= A classical expansion of the local truncation error looks like

1 1
y(t)) —yg = -+ At? (E — ch) L+ g' o))y, + At3 (g— bTAc) U+ 00) yo+

\ Unbounded /

Terms
= Our new semilinear expansion looks like
y(t1) — ¥
2(1 .7 T i [c " 3T (¢’ ’ "
=+ At E_b c +|zb" (I — zA) ?—Ac y'"(ty) + At°b" (I — zA) ?—Ac g (vo)y' (ty)
\ Bounded /
Terms

where z = At]J (scalar here for simplicity).

R o
Lawrence Livermore National Laboratory s “CASC N ‘V Sif_o‘a“ 18
"‘o’.’,""’ National Nuclear Security Administration

LLNL-PRES-852733




Our Semilinear Analysis Extends a Lesser-Known Classical
Analysis

= Butcher trees and B-series are the typical tools for analyzing the local error of a
Runge-Kutta scheme

= Albrecht! proposed alternative order conditions that do not (necessarily) use trees
— Order 4 conditions, for example:

° 0 = L - ch3 0 - 2—14 - bTGCB + ZIbT(I — zlA)—l (% . Ag:’>
24 6
- 0=>b"C (C—Z — Ac) 0=>b0T(I — 20A)"1CI — 2,A)~! (7 _ AC)
2
T (c®  Ac? T . (a2
e 0=0>0h (?_T) 0=0"(I —21A) " (I — 22A) (F_T)

0=bT(I — 20 A)"YA(I — 20 A)~ (I — 23 A)~! (? - Ac)

= We closely follow Albrecht’s derivation, but the stiff, linear term introduces extra
factorsof (I —hA ® /)~ 1.

1. Albrecht, Peter. "The Runge—Kutta theory in a nutshell." SIAM Journal on Numerical Analysis 33.5 (1996): 1712-1735.
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Practical Methods with Semilinear Order 3 Exist

= Desired properties

— Order 3

— Singly diagonally implicit

— L-stable

= Typically, this requires at least 3 stages

= With order 3 semilinear conditions, this requires at least 5 stages

13 13
13 13 0 0 0 0 0
58 58
26 39 13
26 39 13 0 0 0 0
29 58 58
13 13
0 -1 0 13 0 0 0
58 58
13 65 13 13 13
L3 £ -1 -3 13 0 0
29 174 348 116 58
12971 2015824758301938982625 554 819849934875 68790302177688571375 7705505568680430000 13 o)
17611 11720872553456507 801646 11076945065425668 269445346 056471443716 56998 053973484 343863 58
1 3455277656 1061001132073 780513524467 342906676217 77214825271310213828561 13
28312464375 3749092092720 5751892408080 1125548760960 155527924398245799120 000 58
3455277656 _ 1061001132073 780513524467 342906676217 77214825271310213828561 13
28312464375 3749092092720 5751892408080 1125548760960 155527924 398245799120 000 58
83396117862679251596 686 51873391680781295917121 91834777272491463252761 5676271777638433424524 11 2
543 808069678473491279817 197 748388973990 360465388 725077426237964655039756 20141039617721240417771 23 9
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Higher Order Methods are Challenging to Derive

= The first nonlinear order condition appears at order 4

c* Neumann o (c?
— W -1 -1 — hT pt ] P —
O — b (I ZlA) C(I ZzA) < 2 AC) EXpanSion 0 - b A CA < 2 AC> ) l;] - 0) ey S 1

= The number or order conditions increases with the order and the number of stages
= Explicit methods of semilinear order 4 exist

= Singly diagonally implicit method of classical order 4 and semilinear order 3 exist
— This suffices for a global order of 4
— Methods with semilinear order 4 almost certainly exist

g . RALHA 4
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Allen-Cahn is a Semilinear PDE Modeling Phase Separation

= We consider a 2D Allen-Cahn reaction-diffusion PDE

ou 5 2
Frie aVu+ L(u—u’)+s(tx,y)
= \We test methods of order 3 and 4 to validate the

semilinear order conditions

Classical Order Semilinear Order

SDIRK3SL This work 6 3 3

Kennedy, Christopher A., and Mark H. Carpenter. Diagonally implicit Runge-
SD IR K3 M Kutta methods for ordinary differential equations. A review. 2016. 4 3 1

_ Biswas, Abhijit, et al. "Design of DIRK schemes with high weak stage
DIRK (7' 4' 4) order." Communications in Applied Mathematics and Computational 7 4 3
Science 18.1 (2023): 1-28.

Kennedy, Christopher A., and Mark H. Carpenter. Diagonally implicit Runge-
SD IRK4M Kutta methods for ordinary differential equations. A review. 2016. 5 4 1
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The New Method SDIRK3SL Avoid Order Reduction

— © —SDIRK3M |
~ —*— SDIRK3SL | | 4.5 -

Error
Order
w

10" 102 103
Steps Steps
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The Existing DIRK-(7,4,4) Method Avoids Order Reduction

~ — © — SDIRK4M ]
~ —*%— DIRK-(7,4,4) 45 t

Error
Order
w

Steps Steps
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Conclusions

= Classical order conditions rely on assumptions that fail to hold for stiff problems

= The consequence is a reduction in order and accuracy for many integrators

= High stage order is not necessary to avoid order reduction on stiff, semilinear ODEs
= Weak stage order conditions for stiff, linear problems suffice up to order 4

= Order reduction and techniques to eliminate it are not limited to implicit Runge-Kutta
methods
— Implicit-explicit
— Multirate
— Explicit methods
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Part 2: Time-Stepping for the BISICLES Ice Sheet Model

This work was done in collaboration with

David Gardner
* Lawrence Livermore National Laboratory

Daniel Martin
£ Lawrence Berkeley National Laboratory

Carol Woodward
Lawrence Livermore National Laboratory

Hans Johansen
Lawrence Berkeley National Laboratory
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BISICLES Models Ice Sheet Dynamics

= Accurate modeling of ice-sheets is

critical to understanding and predicting

— Future see level rise

— Potential regional collapses in the West
Antarctic ice sheet

= BISICLES is a simulation tool developed
at LBNL, LANL, and the University of
Bristol?

= Long-term time evolution of these
models requires accurate, conservative,
and stable numerical methods

Time= 5.000 years

1. Cornford, Stephen L., et al. "Adaptive mesh, finite volume modeling of marine ice sheets." JCP 232.1 (2013): 529-549.
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The Ice Model Combines Hyperbolic and Elliptic Partial
Differential Equations

= In the simplest case, the two primary variables are Y
— lce thickness H(t, x,y) Z Tt / s(x,y)
— lIce velocity v(t, x, y)

sea level

= An asymptotically-derived approximation to

H 1
Stokes Flow is used |

oH 0 0

= H — H
ot = ox () + 5, (v H)
B?v—V-(Hu(w) V) = —p;gH V - s

= The Chombo library is used for the spatial b(z,y) r(z,y)

discretization with adaptive mesh refinement
(AMR)

— ini From Cornford, Stephen L., et al. "Adaptive mesh, finite volume modeling of marine ice
Second order finite volume method e e,

1. Schoof, Christian, and Richard CA Hindmarsh. "Thin-film flows with wall slip: an asymptotic analysis of higher order glacier flow models." Q/MAM 63.1 (2010): 73-114.

R o
Lawrence Livermore National Laboratory s “CASC N ‘V Sﬁfjg‘ 28
"‘0'-’." & National Nuclear Security Administration

LLNL-PRES-852733




BISICLES was Limited by the Time Discretization

" BISICLES uses an unsplit Godunov piecewise = Project Goals
parabolic method

— Introduce high order time-stepping methods
— First order accurate in time

for improved accuracy and stability

— Explici .
xplicit | — Introduce adaptive methods
— Not method of lines

— Determine which class of integrators is best-

— Limited maximum stable time step ,
suited to the problem

— No error estimation
— Time step chosen by CFL condition

e|eo | e ¢ o e|o | e _
o1 o1 o Update ice
| o | @ ® o | o | @ velocity from

v

Compute face- and time-centered ——1—0—1—0— Advect using thickness from time new thickness
) . . A .
|16 0 thickness via Taylor series T 9 t, + ?t but velocity from t,, I g
t At t
n t,, + — n+1
"2

LLNL-PRES-852733
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We can Solve an Ordinary or Differential-Algebraic Equation

= The time evolution problem is an index-1 differential-algebraic equation (DAE)

dH
E—f(H,v)
0=g(H,v)

= Over 90% of the runtime is spent solving the nonlinear system 0 = g(H, v)!

= Or we can view this as an ordinary differential equation (ODE) where v = G(H) is a
derived quantity computed via a nonlinear solve. This is the “state space form”

dH
T f(H,6(H))

g . RALHA 4
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SUNDIALS Provides Efficient ODE, DAE, and Nonlinear Solvers

* ARKODE provides (additive) Runge-
Kutta methods
e Adaptive or fixed step size

* We use explicit Runge-Kutta T
methods to solve the state space

form == = f(H,G(H)) ! ! S ! ! ]
CVODE CVODES ARKODE | IDA IDAS KINSOL
|
 N_Vectors decouple integrators
from application data structures
* Includes norms, dot product, axpy, Vectors Matrices Linear Solvers Nonlinear Solvers
and other generic operations 1
* We developed a Chombo
N_Vector to operate on AMR grids

RN .
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Our New Chombo N_Vector Enables Package Interoperability

), . > Right-hand side function f(H, G(H))

N = BISICLES

/7 Ice Sheet Model

Time Discretization

Chombo N_Vector Application code

Space Discretization

RN ”
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dH

Second Order is Feasible at the Cost of Order One d_gif;ﬁﬁii

= BISICLES’ first order integrator does 1 expensive algebraic solve for ice velocity each time step

= A second order, explicit Runge-Kutta applied to the state space form requires at least 2
algebraic solves per time step

= We proposed to use a second order “half-explicit Heun’s method” with 1 algebraic solve per
step

K; = f(Hn: vn)
K, = f(Hn + At K, Un+1)
0 =g(H, + At K1, V541)

At
Hy 1 =H, + B (K1 + K3)

N = == O
NH OO O
| =] = O

= |t is not a traditional Runge-Kutta method but a generalized additive Runge-Kutta.

g . RALHA 4
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Twisty Steam is a Benchmark Test Problem

= |ce streams are fast-flowing regions within a
sheet

= |ce streams account for about 90% of ice mass
lost from the Antarctic ice sheet!

= We compare the temporal accuracy of
— The original unsplit Godunov piecewise parabolic

method in BISICLES
— Explicit Runge-Kutta methods from ARKODE of order 1-

4
— The half-explicit Heun’s method from the previous slide

1. https://www.antarcticglaciers.org/glacier-processes/glacier-types/ice-streams/

1.1e+03

[ 1050

— 1000

[ 950
9.2e+02

thickness
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The Integrators Converge

102
10°
E
| -
S 1072
L
)
0
c 1074
AV
R
c
|_
v 10
O = © = Original BISICLES Integrator
2 —— SUNDIALS RK1
— 8 —+&— SUNDIALS RK2
10° —>—— Half-Explicit Heun's Method
—~A—— SUNDIALS RK3
SUNDIALS RK4
10710 ' ' ] ' ' e
Time Steps
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The New Integrators Are Significantly More Efficient

-
. ]
—

e---'°~—_

S TP

104 F

100 F

Ice Thickness Error (m)

o

10'8 3

\

A\\\

- |= © =Original BISICLES Integrator
= | SUNDIALS RK1
- | —+— SUNDIALS RK2

—— Half-Explicit Heun's Method

—4—— SUNDIALS RK3

SUNDIALS RK4

// i

10-10 A

102

103

Time to Solution (s)
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oH 0

BISICLES is Often Stability-Limited oty o

= Despite the hyperbolic PDE for ice thickness,
the problem is sometimes diffusive

= Spatial error often dominates temporal error,
even when using the native, first order method

= In this regime, we achieve the best efficiency by
taking At near the CFL limit

= The following metric is key

max stable At

cost per step
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BISICLES is Often Stability-Limited

O0H 0 d
E = a(UxH) +@(UyH)

p?v—V-(Hu(w) Vv) = —p;,gH V - s

= Despite the hyperbolic PDE for ice thickness,
the problem is sometimes diffusive

Mag(Velocity) (m/a)

= Spatial error often dominates temporal error, lZZZIZ
even when using the native, first order method

= In this regime, we achieve the best efficiency by
taking At near the CFL limit

= The following metric is key

maX Stable At Time=0 years

cost per step
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High Order is Not Always Advantageous for Linear Stability

Stability regions scaled by the
number of function evaluations

1.0} .
0.5} -
1 E Forward Euler
1 [C Heun's Method
£ o0.0f | [ Bogacki-Shampine Method
1 E Classical RK4
-0.5} -
-1.0} -

-2.0 -1.5 -1.0 -0.5 0.0
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We Can Optimize The Stability with Additional Stages

= We derived a first order method in 3

Stages with a |arge sta b|||ty region Stability regions scaled by the

number of function evaluations

2

OO 0 0 _

1 1 |

= = @ @ I

3 3 1'_

2|11 1 I

S|l = = @ _

3121 7 [ |
53 3 21 i 1 [T Stability Optimized Method
E E 5 E 0 Forward Euler

= For the twisty stream problem, we can v/

take a time step roughly 5x bigger

= The minimum time to a stable solution is -2t
reduced by about 35% for the twisty Re
stream problem
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Conclusions

= New Runge-Kutta integrators from SUNDIALS facilitate faster and more accurate
modeling of ice sheets

= Embedded error estimation offers a simpler and effective alternative to CFL based
time step selection

= Chombo N_Vector is now available in Chombo 3.2 patch 8

= Future and ongoing work
— Testing multirate methods
— Exploring other stabilized methods
— Parallel-in-time leveraging SUNDIALS’ wrappers for XBraid
— Exploring more-complex (realistic) ice sheet configurations (grounding-line retreat, realistic
Greenland and Antarctic geometries, etc).

KR )
Lawrence Livermore National Laboratory 2 % CASC N A‘Sﬁf_@i 41
04 National Nuclear Security Administration

LLNL-PRES-852733 ”,03.




Acknowledgements

FASTMATH sundials

This material is based upon work supported by the

U.S. Department of Energy, Office of Science, Office computing.||n|_gov/sundia|s
of Advanced Scientific Computing Research,
Scientific Discovery through Advanced Computing
(SciDAC) Program through the FASTMath Institute

This work was supported by the Fernbach
Fellowship through the LLNL-LDRD Program under
Project No. 23-ERD-048

o
. . R ABRA e
Lawrence Livermore National Laboratory % ¥ CAS( N IS‘?é‘\ 42
‘.0....;..’

LLNL-PRES-852733 National Nuclear Security Administration




CASC

Center for Applied
Scientific Computing

B Lawrence Livermore
National Laboratory

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security,
LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.



