Practical Multirate Time Integration Methods using General Linear Methods

> Steven Roberts Advisor: Dr. Adrian Sandu

"Compute the Future!", Department of Computer Science, Virginia Polytechnic Institute and State University Blacksburg, VA 24060

VSGC, April 8, 2019

Goal: Efficiently solve systems of ODEs

Ordinary differential equations (ODEs) are the building blocks for physical models:

$$y'=f(y), \quad y(t_0)=y_0, \quad f:\mathbb{R}^d\to\mathbb{R}^d.$$

Some popular numerical methods to solve ODEs are:

Steven Roberts VSGC Introduction. [1/12]

ODEs often exhibit multiscale behavior

Low order climate model

Compute the Future!

Active and latent parts of electric circuit

Multirate methods for multiscale problems

Idea: treat the fast and slow dynamics separately

$$y' = f(y) = f^{\{f\}}(y) + f^{\{s\}}(y).$$

- Use a timestep H for the slow dynamics
- Use a timestep h = H/M for the fast dynamics

Steven Roberts VSGC Introduction. [3/12]

Why multirate general linear methods?

- Existing multirate methods have not gained widespread adoption
- Multirate methods introduce coupling error
- Important tradeoff at high order

Multirate Runge–Kutta	Multirate LMM
Complex order conditions	Simpler order conditions
Challenging (but possible) to have good stability	Dahlquist barriers limit stability

General linear methods can offer balance of stability and accuracy.

A new framework for partitioned GLMs

- Multirate GLMs do not fit in existing frameworks
- We developed a new partitioned GLM framework which offers extreme flexibility for multimethods

Order conditions, stability analysis, etc. follow from partitioned GLM theory

Multirate GLMs. [5/12]

One step of a multirate GLM

Slow internal stages:

$$Y_{i}^{\{\mathfrak{s}\}[n]} = H \sum_{j=1}^{\mathfrak{s}\{\mathfrak{s}\}} a_{i,j}^{\{\mathfrak{s},\mathfrak{s}\}} f^{\{\mathfrak{s}\}} \left(Y_{j}^{\{\mathfrak{s}\}[n]}\right) + h \sum_{\lambda=1}^{M} \sum_{j=1}^{\mathfrak{s}\{\mathfrak{f}\}} a_{i,j}^{\{\mathfrak{s},\mathfrak{f},\lambda\}} f^{\{\mathfrak{f}\}} \left(Y_{j}^{\{\mathfrak{f},\lambda\}[n]}\right) + \sum_{j=1}^{r\{\mathfrak{s}\}} u_{i,j}^{\{\mathfrak{s},\mathfrak{s}\}} \xi_{j}^{\{\mathfrak{s}\}[n-1]} + \sum_{j=1}^{r\{\mathfrak{f}\}} u_{i,j}^{\{\mathfrak{s},\mathfrak{f}\}} \xi_{j}^{\{\mathfrak{f}\}[n-1]}.$$

• Fast internal stages for $\lambda = 1, \dots, M$:

$$Y_i^{\{\mathfrak{f},\lambda\}[n]} = +H\sum_{j=1}^{\mathfrak{s}^{\{\mathfrak{s}\}}} a_{i,j}^{\{\mathfrak{f},\mathfrak{s},\lambda\}} f^{\{\mathfrak{s}\}} \left(Y_j^{\{\mathfrak{s}\}[n]}\right) + h\sum_{j=1}^{\mathfrak{s}^{\{\mathfrak{f}\}}} a_{i,j}^{\{\mathfrak{f},\mathfrak{f}\}} f^{\{\mathfrak{f}\}} \left(Y_j^{\{\mathfrak{f},\lambda\}[n]}\right) + \sum_{j=1}^{r^{\{\mathfrak{s}\}}} u_{i,j}^{\{\mathfrak{f},\mathfrak{s},\lambda\}} \xi_j^{\{\mathfrak{s}\}[n-1]} + \sum_{j=1}^{r^{\{\mathfrak{f}\}}} u_{i,j}^{\{\mathfrak{f},\mathfrak{f}\}} \xi_j^{\{\mathfrak{f}\}[n-1+(\lambda-1)/M]}.$$

Update to fast external stages:

$$\xi_i^{\{\mathfrak{f}\}[n-1+\lambda/M]} = h \sum_{j=1}^{\mathfrak{s}\{\mathfrak{f}\}} b_{i,j}^{\{\mathfrak{f},\mathfrak{f}\}} \mathfrak{r}^{\{\mathfrak{f}\}} \left(\mathbf{Y}_j^{\{\mathfrak{f},\lambda\}[n]} \right) + \sum_{j=1}^{\mathfrak{r}\{\mathfrak{f}\}} v_{i,j}^{\{\mathfrak{f},\mathfrak{f}\}} \xi_j^{\{\mathfrak{f}\}[n-1+(\lambda-1)/M]}.$$

Update to slow external stages:

$$\xi_i^{\{\mathfrak{s}\}[n]} = H \sum_{j=1}^{\mathfrak{s}\{\mathfrak{s}\}} b_{i,j}^{\{\mathfrak{s},\mathfrak{s}\}} f^{\{\mathfrak{s}\}} \left(Y_j^{\{\mathfrak{s}\}[n]} \right) + \sum_{j=1}^{r^{\{\mathfrak{s}\}}} v_{i,j}^{\{\mathfrak{s},\mathfrak{s}\}} \xi_i^{\{\mathfrak{s}\}[n-1]}.$$

Steven Roberts VSGC Multirate GLMs. [6/12]

Order conditions

- Start by picking fast and slow base methods of order p and stage order q = p or q = p 1
- The coupling conditions are

$$\frac{\left(c^{\{\mathfrak{f}\}}+(\lambda-1)\mathbb{1}_{\mathfrak{s}^{\{\mathfrak{f}\}}}\right)^{k}}{M^{k}k!}-\frac{A^{\{\mathfrak{f},\mathfrak{s},\lambda\}}c^{\{\mathfrak{s}\}\times(k-1)}}{(k-1)!}-U^{\{\mathfrak{f},\mathfrak{s},\lambda\}}q^{\{\mathfrak{s},\mathfrak{s}\}}_{k}=0, \quad \lambda=1,\ldots,M,$$
$$\frac{M^{k}c^{\{\mathfrak{s}\}\times k}}{k!}-\sum_{\lambda=1}^{M}\frac{A^{\{\mathfrak{s},\mathfrak{f},\lambda\}}\left(c^{\{\mathfrak{f}\}}+(\lambda-1)\mathbb{1}_{\mathfrak{s}^{\{\mathfrak{f}\}}}\right)^{k-1}}{(k-1)!}-U^{\{\mathfrak{s},\mathfrak{f}\}}q^{\{\mathfrak{f},\mathfrak{f}\}}_{k}=0,$$

for k = 1, ..., q.

New explicit methods are derived up to order four

Multirate GLMs. [7/12]

Multirate linear stability analysis

For which $z = H\lambda$ will a multirate GLM not amplify errors when applied to the following test problem?

$$y' = \underbrace{\frac{M\lambda}{2}y}_{\text{fast}} + \underbrace{\frac{\lambda}{2}y}_{\text{slow}}$$

Stability regions for a second order multirate GLM

Gray–Scott test problem

Gray-Scott reaction diffusion PDE:

$$\underbrace{\begin{bmatrix} u \\ v \end{bmatrix}'}_{y'} = \underbrace{\begin{bmatrix} \varepsilon_u \Delta u \\ \varepsilon_v \Delta v \end{bmatrix}}_{f^{\{s\}}(y)} + \underbrace{\begin{bmatrix} -uv^2 + f(1-u) \\ uv^2 - (f+k) \end{bmatrix}}_{f^{\{f\}}(y)}.$$

 $[0, 2.5]^2$ 0.04, and k = 0.06pute

- Periodic boundary conditions on [0, 2.5]²
- Run from t = 0 to t = 100
- $\blacksquare~\varepsilon_u=2\times 10^{-6},~\varepsilon_v=10^{-6},~f=0.04,$ and k=0.06
- Reaction terms are cheap to compute

Gray–Scott Results

Convergence plot for third order multirate GLM.

Work precision plot for third order multirate GLM.

Numerical Experiments. [10/12]

Conclusion

• Example of a family of multirate GLMs:

$$\begin{split} & 0 & 0 & 1 & 0 \\ & \frac{a_{2,1} & 0 & 0 & 1}{\left[\frac{(2a_{2,1}-1)v_{1,2}+1}{2} & \frac{1-v_{1,2}}{2} & 1-v_{1,2} & 1-v_{2,2} & v_{2,2} & 1-v_{2,2} & 1-v_{2,$$

- \blacksquare We develoedp a new framework for partitioned GLMs
- Utilized framework to construct and analyze multirate GLMs
- New methods show excellent stability
- Numerical experiments confirm theoretical properties and show speedup over singlerate GLMs

Conclusion. [11/12]

Questions

- Slides and report available at https://steven-roberts.github.io
- Additional work on practical multirate time integration:
 - Steven Roberts, Arash Sarshar, and Adrian Sandu. "Coupled Multirate Infinitesimal GARK Schemes for Stiff Systems with Multiple Time Scales". In: arXiv preprint arXiv:1812.00808 (2018)
 - A. Sarshar, S. Roberts, and A. Sandu. "Design of High-Order Decoupled Multirate GARK Schemes". In: SIAM Journal on Scientific Computing 41.2 (2019), A816–A847. DOI: 10.1137/18M1182875. eprint: https://doi.org/10.1137/18M1182875. URL: https://doi.org/10.1137/18M1182875

Conclusion. [12/12]

