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Example Method: Multirate Midpoint

Convergence Results

This work considers Multirate General-structure Additive Runge—Kutta (MrGARK) methods [1] - b ) Ynea/Mm + Yni@-1)/M - M N | e-0s | .  e=1500s | . = 30005
for solving stiff systems of ordinary differential equations (ODEs) with multiple time scales. Yn+a/M = Yn+@-1)/M T f 2 ’ A
These methods treat different partitions of the system with different timesteps for a more 3 - o fls) Vni1/2 + Yni1/2 2| | ) | | )|
targeted and efficient solution compared to singlerate approaches. With implicit methods used Yn+1/2 = Yn+1/2 f 2 ’ A A A
across all partitions, methods must find a balance between stability and the cost of solving 3 . A Vntam + nra-1)/m . M . "
nonlinear equations. New implicit multirate methods up to fourth order are derived, and their Yn+a/m = Yn+@a-1)/m T f 2 ’ ) +1.., ' H H
accuracy and efficiency properties are validated with numerical tests. "™ : o | 05! | 0!
Stability Analysis Results
Objective

Do small perturbations in initial conditions lead to small changes in trajectory? o 65 115 2 25 b 05 L 152 28 o o5 1 15 2 25

We seek to develop numerical methods to efficiently integrate stiff systems of ODEs: * The stability of multirate schemes is significantly more complicated than singlerate schemes.

* It not only depends on method coefficients but also the linear test problem: The Gray-Scott model is a reaction-diffusion PDE given by
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Our focus in on problems where certain parts of the system evolve at very different rates than i AU y + pis y or . Uvs—(F+k)V
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others. Here the fast dynamics are described by f{f}, and the slow dynamics are described by

£}, Examples include chemical reactions, fluid flow, electric circuits, and many other physical The reaction terms form the fast partition and the diffusion terms form the slow partition. The

 We proved decoupled GARK cannot be A-stable for the 2D test problem.

ohenomena. The figure below shows the multiscale behavior of a simple climate model convergence plots below show the new methods achieve the theorical order for three different

* Internal consistency simplifies order conditions but inhibits stability.

values of M.
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Multirate GARK Methods
4| 10_5 _8 |
The inverter chain is a classic multirate test problem that simulates the propagation of a signal 10 10~
Singlerate Multirate through a series of MOSFET inverters: 10-6 L f
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e Traditional time integration e Multirate methods use different , "
methods can be inefficient for timesteps for different partitions Up =Upp — Uy = gWin, Uz, Uy),
multiscale problems of an ODE Ui = Uy — U; — g(Ui 1, Ui, Up), L= 2,. Conclusions
e Asingle, global timestep must e Stability analysis not well g( , Up, US) = (max(U; — Us — Ur,0))? + (maX(UG — Uz, 0))%.
accommodate the fastest or understood  We derived new MrGARK methods up to order four designed to efficiently integrate stiff,
stiffest dynamics e Few high order methods -
& As an idealized measure of work, we accumulate the dimensions of all linear solves performed multiscale ODEs.
N while solving the ODEs. Dynamic partitioning is used at each step to determine the fast and * We discovered theoretical stability limitations for GARK and MrGARK methods.
We use the General-structure Additive Runge-Kutta (GARK) framework [2] to create and <low variables. « Many stability results were surprising and will be the subject of further investigation.
analyze new implicit multirate Runge-Kutta methods. The methods integrate /) with a  Certain structures in coupled methods lead to simplifications in the Newton iterations.
macro-step H and U} with a micro-step h = H/M. We consider two main types of coupling —e—Singlerate -#- M =2 - M=4 —+ M=8 —+M=16 * Numerical tests confirm the order of convergence and demonstrate the potential for
structures: standard and predictor-corrector. speedup over singlerate counterparts.
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