
We seek to develop numerical methods to efficiently integrate stiff systems of ODEs:

𝑦" = 𝑓 𝑦 = 𝑓 % 𝑦 + 𝑓 ' 𝑦 , 𝑦 𝑡* = 𝑦*.

Our focus in on problems where certain parts of the system evolve at very different rates than 
others.  Here the fast dynamics are described by 𝑓 % , and the slow dynamics are described by 
𝑓 ' .  Examples include chemical reactions, fluid flow, electric circuits, and many other physical 
phenomena.  The figure below shows the multiscale behavior of a simple climate model.
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This work considers MulKrate General-structure AddiKve Runge−KuTa (MrGARK) methods [1] 
for solving sKff systems of ordinary differenKal equaKons (ODEs) with mulKple Kme scales.  
These methods treat different parKKons of the system with different Kmesteps for a more 
targeted and efficient soluKon compared to singlerate approaches.  With implicit methods used 
across all parKKons, methods must find a balance between stability and the cost of solving 
nonlinear equaKons. New implicit mulKrate methods up to fourth order are derived, and their 
accuracy and efficiency properKes are validated with numerical tests.

Convergence Results

• We derived new MrGARK methods up to order four designed to efficiently integrate sKff, 
mulKscale ODEs.

• We discovered theoreKcal stability limitaKons for GARK and MrGARK methods.
• Many stability results were surprising and will be the subject of further invesKgaKon.
• Certain structures in coupled methods lead to simplificaKons in the Newton iteraKons.
• Numerical tests confirm the order of convergence and demonstrate the potenKal for 

speedup over singlerate counterparts.

Singlerate

• Traditional time integration 
methods can be inefficient for 
multiscale problems

• A single, global timestep must 
accommodate the fastest or 
stiffest dynamics

MulKrate

• MulKrate methods use different 
Kmesteps for different parKKons 
of an ODE

• Stability analysis not well 
understood

• Few high order methods

The Gray−ScoT model is a reacKon-diffusion PDE given by
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𝐷1 ∇𝑉
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𝑈 𝑉3 − 𝐹 + 𝑘 𝑉
.

The reacKon terms form the fast parKKon and the diffusion terms form the slow parKKon.  The 
convergence plots below show the new methods achieve the theorical order for three different 
values of 𝑀.

The inverter chain is a classic mulKrate test problem that simulates the propagaKon of a signal 
through a series of MOSFET inverters:

𝑈8" = 𝑈9: − 𝑈8 − 𝑔 𝑈<=, 𝑈8, 𝑈* ,
𝑈<" = 𝑈9: − 𝑈< − 𝑔 𝑈<>8, 𝑈<, 𝑈* , 𝑖 = 2,… ,𝑚,

𝑔 𝑈C, 𝑈D, 𝑈E = max 𝑈I − 𝑈E − 𝑈J, 0 3 + max 𝑈I − 𝑈D − 𝑈J, 0 3.

As an idealized measure of work, we accumulate the dimensions of all linear solves performed 
while solving the ODEs.  Dynamic parKKoning is used at each step to determine the fast and 
slow variables.

• Do small perturbations in initial conditions lead to small changes in trajectory?
• The stability of multirate schemes is significantly more complicated than singlerate schemes.
• It not only depends on method coefficients but also the linear test problem:

𝑦" = 𝜆 % 𝑦 + 𝜆 ' 𝑦 or
𝑦 %

𝑦 '

"

= 𝜆 % 𝜂 '

𝜂 % 𝜆 '
𝑦 %

𝑦 ' .

• We proved decoupled GARK cannot be A-stable for the 2D test problem.
• Internal consistency simplifies order conditions but inhibits stability.

Mul+rate GARK Methods

We use the General-structure AddiKve Runge−KuTa (GARK) framework [2] to create and 
analyze new implicit mulKrate Runge−KuTa methods.  The methods integrate 𝑓 ' with a 
macro-step 𝐻 and 𝑓 % with a micro-step ℎ = 𝐻/𝑀.  We consider two main types of coupling 
structures: standard and predictor-corrector.

1. Günther, M., & Sandu, A. (2016). MulKrate generalized addiKve Runge−KuTa 
methods. Numerische Mathema-k, 133(3), 497-524.

2. Sandu, A., & Günther, M. (2015). A Generalized-Structure Approach to AddiKve 
Runge−KuTa Methods. SIAM Journal on Numerical Analysis, 53(1), 17-42.
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Example Method: Mul+rate Midpoint

𝑦=QR/S = 𝑦=Q(R>8)/S + ℎ 𝑓 % 𝑦=QR/S + 𝑦=Q(R>8)/S
2 , 𝜆 = 1,… ,

𝑀
2 ,

V𝑦=Q8/3 = 𝑦=Q8/3 + 𝐻 𝑓 ' V𝑦=Q8/3 + 𝑦=Q8/3
2

,

V𝑦=QR/S = V𝑦=Q(R>8)/S + ℎ 𝑓 % V𝑦=QR/S + V𝑦=Q(R>8)/S
2

, 𝜆 =
𝑀
2
+ 1,… ,𝑀


